BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1018 related articles for article (PubMed ID: 7832300)

  • 1. Effects of volatile anesthetics on acetylcholine-induced relaxation in the rabbit mesenteric resistance artery.
    Akata T; Nakashima M; Kodama K; Boyle WA; Takahashi S
    Anesthesiology; 1995 Jan; 82(1):188-204. PubMed ID: 7832300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volatile anesthetic actions on contractile proteins in membrane-permeabilized small mesenteric arteries.
    Akata T; Boyle WA
    Anesthesiology; 1995 Mar; 82(3):700-12. PubMed ID: 7879938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats.
    Sunano S; Watanabe H; Tanaka S; Sekiguchi F; Shimamura K
    Br J Pharmacol; 1999 Feb; 126(3):709-16. PubMed ID: 10188983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhalation anesthetics inhibit the release of endothelium-derived hyperpolarizing factor in the rabbit carotid artery.
    Lischke V; Busse R; Hecker M
    Anesthesiology; 1995 Sep; 83(3):574-82. PubMed ID: 7544960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of sevoflurane on the vascular reactivity of rabbit mesenteric artery.
    Yamaguchi A; Okabe E
    Br J Anaesth; 1995 May; 74(5):576-82. PubMed ID: 7772435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enflurane, halothane, and isoflurane attenuate contractile responses to exogenous and endogenous norepinephrine in isolated small mesenteric veins of the rabbit.
    Stadnicka A; Flynn NM; Bosnjak ZJ; Kampine JP
    Anesthesiology; 1993 Feb; 78(2):326-34. PubMed ID: 8439028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The action of sevoflurane on vascular smooth muscle of isolated mesenteric resistance arteries (part 1): role of endothelium.
    Izumi K; Akata T; Takahashi S
    Anesthesiology; 2000 May; 92(5):1426-40. PubMed ID: 10781290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halothane inhibition of acetylcholine-induced relaxation in rat mesenteric artery and aorta.
    Iranami H; Hatano Y; Tsukiyama Y; Yamamoto M; Maeda H; Mizumoto K
    Can J Anaesth; 1997 Nov; 44(11):1196-203. PubMed ID: 9398962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Halothane, enflurane, and isoflurane attenuate both receptor- and non-receptor-mediated EDRF production in rat thoracic aorta.
    Uggeri MJ; Proctor GJ; Johns RA
    Anesthesiology; 1992 Jun; 76(6):1012-7. PubMed ID: 1599087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volatile anaesthetic actions on norepinephrine-induced contraction of small splanchnic resistance arteries.
    Akata T; Kodama K; Takahashi S
    Can J Anaesth; 1995 Nov; 42(11):1040-50. PubMed ID: 8590495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoflurane inhibits endothelium-mediated nitric oxide relaxing pathways in the isolated perfused rabbit lung.
    Oshima Y; Ishibe Y; Okazaki N; Sato T
    Can J Anaesth; 1997 Oct; 44(10):1108-14. PubMed ID: 9350373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine.
    Tanaka Y; Otsuka A; Tanaka H; Shigenobu K
    Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do enflurane and isoflurane interfere with the release, action, or stability of endothelium-derived relaxing factors?
    Blaise G; Guy C; To Q; Sauvé R
    Can J Anaesth; 1997 May; 44(5 Pt 1):550-8. PubMed ID: 9161752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance.
    García-Pascual A; Labadía A; Jimenez E; Costa G
    Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneity of endothelium-dependent mechanisms in different rabbit arteries.
    Ferrer M; Encabo A; Conde MV; Marín J; Balfagón G
    J Vasc Res; 1995; 32(5):339-46. PubMed ID: 7578802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of endothelium in the action of isoflurane on vascular smooth muscle of isolated mesenteric resistance arteries.
    Izumi K; Akata T; Takahashi S
    Anesthesiology; 2001 Oct; 95(4):990-8. PubMed ID: 11605943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium-dependent relaxation and noradrenaline sensitivity in mesenteric resistance arteries of streptozotocin-induced diabetic rats.
    Taylor PD; McCarthy AL; Thomas CR; Poston L
    Br J Pharmacol; 1992 Oct; 107(2):393-9. PubMed ID: 1422588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K(+) channel blockers and cytochrome P450 inhibitors on acetylcholine-induced, endothelium-dependent relaxation in rabbit mesenteric artery.
    Fujimoto S; Ikegami Y; Isaka M; Kato T; Nishimura K; Itoh T
    Eur J Pharmacol; 1999 Nov; 384(1):7-15. PubMed ID: 10611413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of some inorganic divalent cations and protein kinase C inhibitors on endothelium-dependent relaxation in rat isolated aorta and mesenteric arteries.
    Adeagbo AS; Triggle CR
    J Cardiovasc Pharmacol; 1991 Oct; 18(4):511-21. PubMed ID: 1724527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetes-associated alterations in volatile anesthetic actions on contractile response to norepinephrine in isolated mesenteric resistance arteries.
    Yoshino J; Akata T; Shirozu K; Izumi K; Hoka S
    Anesthesiology; 2010 Mar; 112(3):595-606. PubMed ID: 20124980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.