BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1018 related articles for article (PubMed ID: 7832300)

  • 21. Acetylcholine-induced K+ currents in smooth muscle cells of intact rat small arteries.
    Weidelt T; Boldt W; Markwardt F
    J Physiol; 1997 May; 500 ( Pt 3)(Pt 3):617-30. PubMed ID: 9161980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apamin-sensitive K+ channels mediate an endothelium-dependent hyperpolarization in rabbit mesenteric arteries.
    Murphy ME; Brayden JE
    J Physiol; 1995 Dec; 489 ( Pt 3)(Pt 3):723-34. PubMed ID: 8788937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of volatile anesthetic agents on in situ vascular smooth muscle transmembrane potential in resistance- and capacitance-regulating blood vessels.
    Yamazaki M; Stekiel TA; Bosnjak ZJ; Kampine JP; Stekiel WJ
    Anesthesiology; 1998 Apr; 88(4):1085-95. PubMed ID: 9579519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of K(+)-channel blockers on ACh-induced hyperpolarization and relaxation in mesenteric arteries.
    Chen G; Cheung DW
    Am J Physiol; 1997 May; 272(5 Pt 2):H2306-12. PubMed ID: 9176299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery.
    Plane F; Wiley KE; Jeremy JY; Cohen RA; Garland CJ
    Br J Pharmacol; 1998 Apr; 123(7):1351-8. PubMed ID: 9579730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of protamine on vascular smooth muscle of rabbit mesenteric artery.
    Akata T; Yoshitake J; Nakashima M; Itoh T
    Anesthesiology; 1991 Nov; 75(5):833-46. PubMed ID: 1952208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of the acetylcholine-induced relaxation of canine isolated basilar artery by potassium-conductance blockers.
    Elliott DA; Gu M; Ong BY; Bose D
    Can J Physiol Pharmacol; 1991 Jun; 69(6):786-91. PubMed ID: 1913325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decreased endothelium-dependent hyperpolarization to acetylcholine in smooth muscle of the mesenteric artery of spontaneously hypertensive rats.
    Fujii K; Tominaga M; Ohmori S; Kobayashi K; Koga T; Takata Y; Fujishima M
    Circ Res; 1992 Apr; 70(4):660-9. PubMed ID: 1551193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of endothelium in regulation of smooth muscle membrane potential and tone in the rabbit middle cerebral artery.
    Yamakawa N; Ohhashi M; Waga S; Itoh T
    Br J Pharmacol; 1997 Aug; 121(7):1315-22. PubMed ID: 9257909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of volatile anesthetic actions on intracellular calcium stores of vascular smooth muscle: investigation in isolated systemic resistance arteries.
    Akata T; Nakashima M; Izumi K
    Anesthesiology; 2001 May; 94(5):840-50. PubMed ID: 11388536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of halothane and isoflurane on acetylcholine-induced, endothelium-dependent vasodilation in perfused rat mesenteric arterial beds.
    Tsukiyama Y; Iranami H; Kinoshita H; Ogawa K; Hatano Y
    J Anesth; 2003; 17(1):13-21. PubMed ID: 12908683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitric oxide, prostanoid and non-NO, non-prostanoid involvement in acetylcholine relaxation of isolated human small arteries.
    Buus NH; Simonsen U; Pilegaard HK; Mulvany MJ
    Br J Pharmacol; 2000 Jan; 129(1):184-92. PubMed ID: 10694219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of endothelium in oscillatory contractile responses to various receptor agonists in isolated small mesenteric and epicardial coronary arteries.
    Akata T; Kodama K; Takahashi S
    Jpn J Pharmacol; 1995 Jul; 68(3):331-43. PubMed ID: 7474557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery.
    Zygmunt PM; Högestätt ED
    Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibitory effects of propofol on acetylcholine-induced, endothelium-dependent relaxation and prostacyclin synthesis in rabbit mesenteric resistance arteries.
    Yamashita A; Kajikuri J; Ohashi M; Kanmura Y; Itoh T
    Anesthesiology; 1999 Oct; 91(4):1080-9. PubMed ID: 10519512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Some electrical properties of the endothelium-dependent hyperpolarization recorded from rat arterial smooth muscle cells.
    Chen G; Suzuki H
    J Physiol; 1989 Mar; 410():91-106. PubMed ID: 2795490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Different responses to acetylcholine in the presence of nitric oxide inhibitor in rat aortae and mesenteric arteries.
    Wu CC; Chen SJ; Yen MH
    Clin Exp Pharmacol Physiol; 1993 Jun; 20(6):405-12. PubMed ID: 8339465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of nitric oxide and nitric oxide-independent relaxing factor in contraction and relaxation of rabbit blood vessels.
    Fujimoto S; Itoh T
    Eur J Pharmacol; 1997 Jul; 330(2-3):177-84. PubMed ID: 9253951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 51.