These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7832529)

  • 1. Production of chemicals using genetically transformed plant organs.
    Doran PM
    Ann N Y Acad Sci; 1994 Nov; 745():426-41. PubMed ID: 7832529
    [No Abstract]   [Full Text] [Related]  

  • 2. T-DNA of Agrobacterium tumefaciens: 25 years and counting.
    Binns AN
    Trends Plant Sci; 2002 May; 7(5):231-3. PubMed ID: 11992829
    [No Abstract]   [Full Text] [Related]  

  • 3. Biological activity of the tzs gene of nopaline Agrobacterium tumefaciens GV3101 in plant regeneration and genetic transformation.
    Han ZF; Hunter DM; Sibbald S; Zhang JS; Tian L
    Mol Plant Microbe Interact; 2013 Nov; 26(11):1359-65. PubMed ID: 24088018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shikonin production by extractive cultivation in transformed-suspension and hairy root cultures of Lithospermum erythrorhizon.
    Sim SJ; Kim DJ; Chang HN
    Ann N Y Acad Sci; 1994 Nov; 745():442-54. PubMed ID: 7832530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative and deconvolution omics approaches to uncover the Agrobacterium tumefaciens lifestyle in plant tumors.
    Gonzalez-Mula A; Torres M; Faure D
    Plant Signal Behav; 2019; 14(3):e1581562. PubMed ID: 30774017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf disk transformation.
    Curtis IS; Davey MR; Power JB
    Methods Mol Biol; 1995; 44():59-70. PubMed ID: 7581684
    [No Abstract]   [Full Text] [Related]  

  • 7. Fundamental discoveries and simple recombination between circular plasmid DNAs led to widespread use of Agrobacterium tumefaciens as a generalized vector for plant genetic engineering.
    Zambryski P
    Int J Dev Biol; 2013; 57(6-8):449-52. PubMed ID: 24166427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells.
    Mestiri I; Norre F; Gallego ME; White CI
    Plant J; 2014 Feb; 77(4):511-20. PubMed ID: 24299074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of anti-tumor necrosis factor alpha (TNFα) single-chain variable fragment (scFv) in Spirodela punctata plants transformed with Agrobacterium tumefaciens.
    Balaji P; Satheeshkumar PK; Venkataraman K; Vijayalakshmi MA
    Biotechnol Appl Biochem; 2016 May; 63(3):354-61. PubMed ID: 25786575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gateway vectors for transformation of cereals.
    Karimi M; Inzé D; Van Lijsebettens M; Hilson P
    Trends Plant Sci; 2013 Jan; 18(1):1-4. PubMed ID: 23121806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of plant cell culture collection for efficient host species for Agrobacterium-mediated transient expression.
    Sindarovska YR; Golovach IS; Belokurova VB; Gerasymenko IM; Sheludko YV; Kuchuk NV
    Tsitol Genet; 2014; 48(4):9-18. PubMed ID: 25181853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment of an efficient genetic transformation method in Dunaliella tertiolecta mediated by Agrobacterium tumefaciens.
    Norzagaray-Valenzuela CD; Germán-Báez LJ; Valdez-Flores MA; Hernández-Verdugo S; Shelton LM; Valdez-Ortiz A
    J Microbiol Methods; 2018 Jul; 150():9-17. PubMed ID: 29777738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Genetic transformation of Pinellia ternata with Agrobacterium tumefaciens-mediated sHSP genes].
    Guo ZY; Cui TT; Xue JP; Zhu YF; Zhang AM; Sheng W; Teng JT
    Zhongguo Zhong Yao Za Zhi; 2012 Dec; 37(24):3758-62. PubMed ID: 23627174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer of T-DNA from Agrobacterium to the plant cell.
    Zupan JR; Zambryski P
    Plant Physiol; 1995 Apr; 107(4):1041-7. PubMed ID: 7770515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three methods for the introduction of foreign DNA into Agrobacterium.
    Wise AA; Liu Z; Binns AN
    Methods Mol Biol; 2006; 343():43-53. PubMed ID: 16988332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for Functional Transgenics: Development of Highly Efficient Transformation Protocol in Brachypodium and Its Suitability for Advancing Brachypodium Transgenics.
    Vunsh R
    Methods Mol Biol; 2018; 1667():101-117. PubMed ID: 29039007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multigene Engineering in Rice Using High-Capacity Agrobacterium tumefaciens BIBAC Vectors.
    He R
    Methods Mol Biol; 2016; 1385():29-37. PubMed ID: 26614279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol for Agrobacterium-Mediated Transformation and Transgenic Plant Production of Switchgrass.
    Chen Q; Song GQ
    Methods Mol Biol; 2019; 1864():105-115. PubMed ID: 30415332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purine synthesis and increased Agrobacterium tumefaciens transformation of yeast and plants.
    Roberts RL; Metz M; Monks DE; Mullaney ML; Hall T; Nester EW
    Proc Natl Acad Sci U S A; 2003 May; 100(11):6634-9. PubMed ID: 12740435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A versatile Agrobacterium-mediated transient gene expression system for herbaceous plants and trees.
    Zheng L; Liu G; Meng X; Li Y; Wang Y
    Biochem Genet; 2012 Oct; 50(9-10):761-9. PubMed ID: 22610523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.