These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 7832586)

  • 1. Bioenergetics: the evolution of molecular mechanisms and the development of bioenergetic concepts.
    Skulachev VP
    Antonie Van Leeuwenhoek; 1994; 65(4):271-84. PubMed ID: 7832586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sodium cycle: a novel type of bacterial energetics.
    Skulachev VP
    J Bioenerg Biomembr; 1989 Dec; 21(6):635-47. PubMed ID: 2687258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of membrane bioenergetics.
    Wilson TH; Lin EC
    J Supramol Struct; 1980; 13(4):421-46. PubMed ID: 6453255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-linked energy transductions. Bioenergetic functions of sodium: H+ is not unique as a coupling ion.
    Skulachev VP
    Eur J Biochem; 1985 Sep; 151(2):199-208. PubMed ID: 2863140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial sodium ion-coupled energetics.
    Dimroth P
    Antonie Van Leeuwenhoek; 1994; 65(4):381-95. PubMed ID: 7832594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of a self-contained concept of the molecular mechanism of energy interconversion by H(+)-transporting ATP synthase.
    Repke KR; Schön R
    Biol Rev Camb Philos Soc; 1994 May; 69(2):119-45. PubMed ID: 8054442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na(+)-coupled alternative to H(+)-coupled primary transport systems in bacteria.
    Dimroth P
    Bioessays; 1991 Sep; 13(9):463-8. PubMed ID: 1665692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The coupling ATPase complex: an evolutionary view.
    Harris DA
    Biosystems; 1981; 14(1):113-21. PubMed ID: 6268221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters.
    Harvey WR
    J Exp Biol; 2009 Jun; 212(Pt 11):1620-9. PubMed ID: 19448072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 2. Relationships between proton motive force and ATP synthesis.
    Pitard B; Richard P; Duñach M; Rigaud JL
    Eur J Biochem; 1996 Feb; 235(3):779-88. PubMed ID: 8654429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speculations on the evolution of ion transport mechanisms.
    Wilson TH; Maloney PC
    Fed Proc; 1976 Aug; 35(10):2174-9. PubMed ID: 133032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous energy supply to the plasma membrane of dark aerobic cyanobacterium Anacystis nidulans: ATPase-independent efflux of H+ and Na+ from respiring cells.
    Erber WW; Nitschmann WH; Muchl R; Peschek GA
    Arch Biochem Biophys; 1986 May; 247(1):28-39. PubMed ID: 3010878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioenergetics of alkalophilic bacteria.
    Krulwich TA
    J Membr Biol; 1986; 89(2):113-25. PubMed ID: 2871195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanisms of energy transitions in respiration and photosynthesis: the role of the phospholipid membrane].
    Dmitriev LF
    Biofizika; 1995; 40(1):74-85. PubMed ID: 7703278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the vacuolar H+-ATPase by adenylates as basis for the transient CO2-dependent acidification of the leaf vacuole upon illumination.
    Dietz KJ; Heber U; Mimura T
    Biochim Biophys Acta; 1998 Aug; 1373(1):87-92. PubMed ID: 9733929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial Na+ - or H+ -coupled ATP synthases operating at low electrochemical potential.
    Dimroth P; Cook GM
    Adv Microb Physiol; 2004; 49():175-218. PubMed ID: 15518831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ATP synthase (F0-F1) complex in oxidative phosphorylation.
    Issartel JP; Dupuis A; Garin J; Lunardi J; Michel L; Vignais PV
    Experientia; 1992 Apr; 48(4):351-62. PubMed ID: 1533842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy transduction in the methanogen Methanococcus voltae is based on a sodium current.
    Dybas M; Konisky J
    J Bacteriol; 1992 Sep; 174(17):5575-83. PubMed ID: 1324904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling between H+ transport and anaerobic glycolysis in turtle urinary bladder: effect of inhibitors of H+ ATPase.
    Steinmetz PR; Husted RF; Mueller A; Beauwens R
    J Membr Biol; 1981 Mar; 59(1):27-34. PubMed ID: 6264081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.