BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7832985)

  • 1. Monitoring the effect of subunit assembly on the structural flexibility of human alpha apohemoglobin by steady-state fluorescence.
    O'Malley SM; McDonald MJ
    J Protein Chem; 1994 Aug; 13(6):561-7. PubMed ID: 7832985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady state fluorescence energy transfer measurements of human alpha apohemoglobin structure.
    O'Malley SM; McDonald MJ
    Biochem Biophys Res Commun; 1994 Apr; 200(1):384-8. PubMed ID: 8166709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence studies of human semi-beta-hemoglobin assembly.
    Chiu F; Vasudevan G; Morris A; McDonald MJ
    Biochem Biophys Res Commun; 1998 Jan; 242(2):365-8. PubMed ID: 9446800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence studies of normal and sickle beta apohemoglobin self-association.
    O'Malley SM; McDonald MJ
    J Protein Chem; 1994 Oct; 13(7):585-90. PubMed ID: 7702740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimensions in solution of pyridoxylated apohemoglobin.
    Kowalczyck J; Bucci E
    Biochemistry; 1983 Sep; 22(20):4805-9. PubMed ID: 6626535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specialized functional domains in hemoglobin: dimensions in solution of the apohemoglobin dimer labeled with fluorescein iodoacetamide.
    Sassaroli M; Bucci E; Liesegang J; Fronticelli C; Steiner RF
    Biochemistry; 1984 May; 23(11):2487-91. PubMed ID: 6548152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of human apohemoglobin dimer dissociation.
    Moulton DP; McDonald MJ
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1278-83. PubMed ID: 8147871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral demonstration of semihemoglobin formation during CN-hemin incorporation into human apohemoglobins.
    Vasudevan G; McDonald MJ
    J Biol Chem; 1997 Jan; 272(1):517-24. PubMed ID: 8995292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of heme binding to semi-alpha-hemoglobin.
    Park RY; McDonald MJ
    Biochem Biophys Res Commun; 1989 Jul; 162(1):522-7. PubMed ID: 2751669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Esterification of the propionate groups promotes alpha/beta hemoglobin chain homogeneity of CN-hemin binding.
    Jennings TM; McDonald MJ
    Biochem Biophys Res Commun; 2002 May; 293(5):1354-7. PubMed ID: 12054662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on hemoglobin tryptophanyl contact residues in the haptoglobin-hemoglobin complex.
    Rogard M; Waks M
    Eur J Biochem; 1977 Jul; 77(2):367-73. PubMed ID: 891540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the global architecture of hemoglobin A2 by heme binding studies and molecular modeling.
    Vasudevan G; McDonald MJ
    J Protein Chem; 1998 May; 17(4):319-27. PubMed ID: 9619585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous motions within human apohemoglobin.
    Haouz A; El Mohsni S; Zentz C; Merola F; Alpert B
    Eur J Biochem; 1999 Aug; 264(1):250-7. PubMed ID: 10447695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence studies of internal rotation in apohemoglobin alpha-chains.
    Oton J; Franchi D; Steiner RF; Martinez CF; Bucci E
    Arch Biochem Biophys; 1984 Feb; 228(2):519-24. PubMed ID: 6696445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Localization of pyridoxal-5-phosphate, covalently bound with human hemoglobin. Spectrofluorimetric studies].
    Zavodnik IB; Konovalova NV; Stepuro II
    Biofizika; 1999; 44(3):412-20. PubMed ID: 10439858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly asymmetric interactions between globin chains during hemoglobin assembly revealed by electrospray ionization mass spectrometry.
    Griffith WP; Kaltashov IA
    Biochemistry; 2003 Aug; 42(33):10024-33. PubMed ID: 12924951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of heme addition on formation of stable human globin chains and hemoglobin subunit assembly in a cell-free system.
    Adachi K; Zhao Y; Surrey S
    Arch Biochem Biophys; 2003 May; 413(1):99-106. PubMed ID: 12706346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolution of end-to-end distance distributions of flexible molecules using quenching-induced variations of the Forster distance for fluorescence energy transfer.
    Gryczynski I; Wiczk W; Johnson ML; Cheung HC; Wang CK; Lakowicz JR
    Biophys J; 1988 Oct; 54(4):577-86. PubMed ID: 3224143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gelling properties of apohemoglobin S alone and in mixtures with hemoglobin S.
    Campbell B; Fronticelli C; Zachary A; Bucci E
    J Biol Chem; 1986 Mar; 261(9):3931-3. PubMed ID: 3949796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoelectron quantum yields of hemin, hemoglobin, and apohemoglobin. Possible applications to photoelectron microscopy of heme proteins in biological membranes.
    Dam RJ; Kongslie KF; Griffith OH
    Biophys J; 1974 Dec; 14(12):933-9. PubMed ID: 4429771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.