These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7833441)

  • 1. Molecular weight dependence of calcification of polyethylene glycol hydrogels.
    Hossainy SF; Hubbell JA
    Biomaterials; 1994 Sep; 15(11):921-5. PubMed ID: 7833441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of covalently and physically cross-linked polyethylene glycol-based hydrogels for the prevention of postoperative adhesions in a rat model.
    West JL; Hubbell JA
    Biomaterials; 1995 Oct; 16(15):1153-6. PubMed ID: 8562791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels.
    Cruise GM; Scharp DS; Hubbell JA
    Biomaterials; 1998 Jul; 19(14):1287-94. PubMed ID: 9720892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of poly(ethylene glycol) hydrogels with different network structures for the application of enzyme immobilization.
    Choi D; Lee W; Park J; Koh W
    Biomed Mater Eng; 2008; 18(6):345-56. PubMed ID: 19197111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein diffusion in photopolymerized poly(ethylene glycol) hydrogel networks.
    Engberg K; Frank CW
    Biomed Mater; 2011 Oct; 6(5):055006. PubMed ID: 21873762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of polymer composition on the gelation behavior of PLGA-g-PEG biodegradable thermoreversible gels.
    Tarasevich BJ; Gutowska A; Li XS; Jeong BM
    J Biomed Mater Res A; 2009 Apr; 89(1):248-54. PubMed ID: 18464255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
    Skaalure SC; Dimson SO; Pennington AM; Bryant SJ
    Acta Biomater; 2014 Aug; 10(8):3409-20. PubMed ID: 24769116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial cellulose gels with high mechanical strength.
    Numata Y; Sakata T; Furukawa H; Tajima K
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():57-62. PubMed ID: 25492172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular weight dependence of polyethylene glycol penetration across acetone-disrupted permeability barrier.
    Tsai JC; Hung PL; Sheu HM
    Arch Dermatol Res; 2001 Jun; 293(6):302-7. PubMed ID: 11480590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of neurite growth in three dimensional natural and synthetic hydrogels.
    Zhou W; Blewitt M; Hobgood A; Willits RK
    J Biomater Sci Polym Ed; 2013; 24(3):301-14. PubMed ID: 23565649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-strength cellulose/poly(ethylene glycol) gels.
    Liang S; Wu J; Tian H; Zhang L; Xu J
    ChemSusChem; 2008; 1(6):558-63. PubMed ID: 18702155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of cross-linker chemistry on release kinetics of PEG-co-PGA hydrogels.
    Bencherif SA; Sheehan JA; Hollinger JO; Walker LM; Matyjaszewski K; Washburn NR
    J Biomed Mater Res A; 2009 Jul; 90(1):142-53. PubMed ID: 18491397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement.
    Rödel M; Teßmar J; Groll J; Gbureck U
    Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomechanical measurements of polyethylene glycol hydrogels using atomic force microscopy.
    Drira Z; Yadavalli VK
    J Mech Behav Biomed Mater; 2013 Feb; 18():20-8. PubMed ID: 23237877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs.
    Diramio JA; Kisaalita WS; Majetich GF; Shimkus JM
    Biotechnol Prog; 2005; 21(4):1281-8. PubMed ID: 16080712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, permeability and biocompatibility of tricomponent membranes containing polyethylene glycol, polydimethylsiloxane and polypentamethylcyclopentasiloxane domains.
    Kurian P; Kasibhatla B; Daum J; Burns CA; Moosa M; Rosenthal KS; Kennedy JP
    Biomaterials; 2003 Sep; 24(20):3493-503. PubMed ID: 12809778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved vascularization of porous scaffolds through growth factor delivery from heparinized polyethylene glycol hydrogels.
    Janse van Rensburg A; Davies NH; Oosthuysen A; Chokoza C; Zilla P; Bezuidenhout D
    Acta Biomater; 2017 Feb; 49():89-100. PubMed ID: 27865963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injectable silk-polyethylene glycol hydrogels.
    Wang X; Partlow B; Liu J; Zheng Z; Su B; Wang Y; Kaplan DL
    Acta Biomater; 2015 Jan; 12():51-61. PubMed ID: 25449912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of polymer molecular weight in lamellar gels based on PEG-lipids.
    Warriner HE; Keller SL; Idziak SH; Slack NL; Davidson P; Zasadzinski JA; Safinya CR
    Biophys J; 1998 Jul; 75(1):272-93. PubMed ID: 9649387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.