These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 7833499)

  • 1. Effects of gliclazide on fibrin network.
    Dhall DP; Nair CH
    J Diabetes Complications; 1994; 8(4):231-4. PubMed ID: 7833499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on fibrin network structure in human plasma. Part II--Clinical application: diabetes and antidiabetic drugs.
    Nair CH; Azhar A; Wilson JD; Dhall DP
    Thromb Res; 1991 Nov; 64(4):477-85. PubMed ID: 1788832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloid determination of fibrin network permeability.
    van Gelder JM; Nair CH; Dhall DP
    Blood Coagul Fibrinolysis; 1996 Nov; 7(8):747-60. PubMed ID: 9034554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assays of fibrin network properties altered by VKAs in atrial fibrillation - importance of using an appropriate coagulation trigger.
    Ząbczyk M; Blombäck M; Majewski J; Karkowski G; Wallen HN; Undas A; He S
    Thromb Haemost; 2015 Apr; 113(4):851-61. PubMed ID: 25518887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Poloxamer 188 on fibrin network structure, whole blood clot premeability and fibrinolysis.
    van Gelder JM; Nair CH; Dhall DP
    Thromb Res; 1993 Sep; 71(5):361-76. PubMed ID: 8236163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of acetylsalicylic acid on increase of fibrin network porosity and the consequent upregulation of fibrinolysis.
    He S; Bark N; Wang H; Svensson J; Blombäck M
    J Cardiovasc Pharmacol; 2009 Jan; 53(1):24-9. PubMed ID: 19129740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in fibrin fiber diameters in healthy individuals and thromboembolic ischemic stroke patients.
    Pretorius E; Steyn H; Engelbrecht M; Swanepoel AC; Oberholzer HM
    Blood Coagul Fibrinolysis; 2011 Dec; 22(8):696-700. PubMed ID: 22001525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compaction as a method to characterise fibrin network structure: kinetic studies and relationship to crosslinking.
    Nair CH; Shats EA
    Thromb Res; 1997 Nov; 88(4):381-7. PubMed ID: 9526962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disintegration and reorganization of fibrin networks during tissue-type plasminogen activator-induced clot lysis.
    Meh DA; Mosesson MW; DiOrio JP; Siebenlist KR; Hernandez I; Amrani DL; Stojanovich L
    Blood Coagul Fibrinolysis; 2001 Dec; 12(8):627-37. PubMed ID: 11734662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of homocysteine thiol group on fibrin networks: another possible mechanism of harm.
    Lauricella AM; Quintana IL; Kordich LC
    Thromb Res; 2002 Jul; 107(1-2):75-9. PubMed ID: 12413593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy.
    Collet JP; Park D; Lesty C; Soria J; Soria C; Montalescot G; Weisel JW
    Arterioscler Thromb Vasc Biol; 2000 May; 20(5):1354-61. PubMed ID: 10807754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing techniques: the use of recalcified plasma in comparison with citrated plasma alone and in combination with thrombin in ultrastructural studies.
    Pretorius E; Oberholzer HM; van der Spuy WJ; Franz RC
    Hematology; 2011 Nov; 16(6):337-40. PubMed ID: 22183067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estrogen causes ultrastructural changes of fibrin networks during the menstrual cycle: a qualitative investigation.
    Swanepoel AC; Lindeque BG; Swart PJ; Abdool Z; Pretorius E
    Microsc Res Tech; 2014 Aug; 77(8):594-601. PubMed ID: 24841871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on fibrin network structure: the effect of some plasma proteins.
    Nair CH; Dhall DP
    Thromb Res; 1991 Feb; 61(3):315-25. PubMed ID: 2028448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects on fibrin network porosity of anticoagulants with different modes of action and reversal by activated coagulation factor concentrate.
    Blombäck M; He S; Bark N; Wallen HN; Elg M
    Br J Haematol; 2011 Mar; 152(6):758-65. PubMed ID: 21250974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound reversibly disaggregates fibrin fibers.
    Braaten JV; Goss RA; Francis CW
    Thromb Haemost; 1997 Sep; 78(3):1063-8. PubMed ID: 9308755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased fibrinolytic potential induced by gliclazide in type I and type II diabetic patients.
    Gram J; Jespersen J
    Metabolism; 1992 May; 41(5 Suppl 1):25-9. PubMed ID: 1574011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma fibrin clot properties in the G20210A prothrombin mutation carriers following venous thromboembolism: the effect of rivaroxaban.
    Janion-Sadowska A; Natorska J; Siudut J; Ząbczyk M; Stanisz A; Undas A
    Thromb Haemost; 2017 Aug; 117(9):1739-1749. PubMed ID: 28771277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased fibrinolytic potential induced by gliclazide in types I and II diabetic patients.
    Gram J; Jespersen J
    Am J Med; 1991 Jun; 90(6A):62S-66S. PubMed ID: 1908183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of fibrinogen Bicêtre II: a gamma 308 Asn-->Lys mutation located near the fibrin D:D interaction sites.
    Marchi RC; Carvajal Z; Boyer-Neumann C; Anglés-Cano E; Weisel JW
    Blood Coagul Fibrinolysis; 2006 Apr; 17(3):193-201. PubMed ID: 16575257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.