These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 7833618)

  • 41. Neuropeptides in platyhelminths.
    Fairweather I; Halton DW
    Parasitology; 1991; 102 Suppl():S77-92. PubMed ID: 2057217
    [No Abstract]   [Full Text] [Related]  

  • 42. Evolution and Functional Morphology of the Proboscis in Kalyptorhynchia (Platyhelminthes).
    Smith JP; Litvaitis MK; Gobert S; Uyeno T; Artois T
    Integr Comp Biol; 2015 Aug; 55(2):205-16. PubMed ID: 26002347
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural and functional conservation of serotonin receptors throughout evolution.
    Hen R
    EXS; 1993; 63():266-78. PubMed ID: 8422538
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Elucidating the phylogenetic position of Gnathostomulida and first mitochondrial genomes of Gnathostomulida, Gastrotricha and Polycladida (Platyhelminthes).
    Golombek A; Tobergte S; Struck TH
    Mol Phylogenet Evol; 2015 May; 86():49-63. PubMed ID: 25796325
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Classical transmitters and their receptors in flatworms.
    Ribeiro P; El-Shehabi F; Patocka N
    Parasitology; 2005; 131 Suppl():S19-40. PubMed ID: 16569290
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Do glial cells exist in the nervous system of parasitic and free-living flatworms? An ultrastructural and immunocytochemical investigation.
    Biserova NM
    Acta Biol Hung; 2008; 59 Suppl():209-19. PubMed ID: 18652394
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The nervous system of Tricladida. I. Neuroanatomy of Procerodes littoralis (Maricola, Procerodidae): an immunocytochemical study.
    Reuter M; Gustafsson MK; Sahlgren C; Halton DW; Maule AG; Shaw C
    Invert Neurosci; 1995; 1(2):113-22. PubMed ID: 9372136
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A common origin of complex life cycles in parasitic flatworms: evidence from the complete mitochondrial genome of Microcotyle sebastis (Monogenea: Platyhelminthes).
    Park JK; Kim KH; Kang S; Kim W; Eom KS; Littlewood DT
    BMC Evol Biol; 2007 Feb; 7():11. PubMed ID: 17270057
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Looks can deceive: molecular phylogeny of a family of flatworm ectoparasites (Monogenea: Capsalidae) does not reflect current morphological classification.
    Perkins EM; Donnellan SC; Bertozzi T; Chisholm LA; Whittington ID
    Mol Phylogenet Evol; 2009 Sep; 52(3):705-14. PubMed ID: 19457457
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Architecture of the nervous system in metacercariae of Diplostomum pseudospathaceum Niewiadomska, 1984 (Digenea).
    Petrov AA; Podvyaznaya IM; Zaitseva OV
    Parasitol Res; 2019 Apr; 118(4):1193-1203. PubMed ID: 30725179
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Parasitic peptides! The structure and function of neuropeptides in parasitic worms.
    Day TA; Maule AG
    Peptides; 1999; 20(8):999-1019. PubMed ID: 10503780
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phylogenetic distribution of microRNAs supports the basal position of acoel flatworms and the polyphyly of Platyhelminthes.
    Sempere LF; Martinez P; Cole C; Baguñà J; Peterson KJ
    Evol Dev; 2007; 9(5):409-15. PubMed ID: 17845513
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiple Hox/HOM-class homeoboxes in Platyhelminthes.
    Bartels JL; Murtha MT; Ruddle FH
    Mol Phylogenet Evol; 1993 Jun; 2(2):143-51. PubMed ID: 7912986
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An endocrine brain? The pattern of FMRF-amide immunoreactivity in Acoela (Plathelminthes).
    Reuter M; Raikova OI; Gustafsson MK
    Tissue Cell; 1998 Feb; 30(1):57-63. PubMed ID: 9569678
    [TBL] [Abstract][Full Text] [Related]  

  • 55. De novo discovery of neuropeptides in the genomes of parasitic flatworms using a novel comparative approach.
    Koziol U; Koziol M; Preza M; Costábile A; Brehm K; Castillo E
    Int J Parasitol; 2016 Oct; 46(11):709-21. PubMed ID: 27388856
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Localisation, quantitation, and characterisation of neuropeptide F- and FMRFamide-immunoreactive peptides in turbellarians and a monogenean: a comparative study.
    Johnston RN; Shaw C; Brennan GP; Maule AG; Halton DW
    J Comp Neurol; 1995 Jun; 357(1):76-84. PubMed ID: 7673469
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Early evolutional forms of epidermal nervous junction in Bilateria as possible witness of the first variety of its original condition].
    Lagutenko IuP
    Zh Evol Biokhim Fiziol; 2002; 38(3):275-82. PubMed ID: 12325270
    [No Abstract]   [Full Text] [Related]  

  • 58. Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms.
    Telford MJ; Lockyer AE; Cartwright-Finch C; Littlewood DT
    Proc Biol Sci; 2003 May; 270(1519):1077-83. PubMed ID: 12803898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Discoplana malagasensis sp. nov., a new turbellarian (Platyhelminthes: Polycladida: Leptoplanidae) symbiotic in an ophiuroid (Echinodermata), with a cladistic analysis of the Discoplana/Euplana species.
    Doignon G; Artois T; Deheyn D
    Zoolog Sci; 2003 Mar; 20(3):357-69. PubMed ID: 12692396
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The neuroendocrine system of flatworms.
    Wikgren M
    Prog Clin Biol Res; 1990; 342():323-8. PubMed ID: 2200011
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.