BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 7833833)

  • 1. Sodium-22 uptake in erythrocytes can differentiate between the essential and the secondary hypertensive patient.
    Parui R; Gambhir KK; Cruz IA; Hosten AO; Mehrotra PP
    Biochem Mol Biol Int; 1994 Oct; 34(3):561-7. PubMed ID: 7833833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How extracellular potassium affects intracellular sodium pool in human erythrocytes.
    Parui R; Gambhir KK; Mehrotra PP; Curry CL
    Biochem Int; 1992 Sep; 27(6):1093-100. PubMed ID: 1332719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-22 influx into erythrocytes from diabetic hypertensive patients on maintenance hemodialysis.
    Gambhir KK; Mathews J; Parui R; Cruz IA; Hosten AO; Dillard MG
    J Natl Med Assoc; 1990 Oct; 82(10):697-9. PubMed ID: 2280418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium-lithium countertransport and the Gly460-->Trp alpha-adducin polymorphism in essential hypertension.
    Mead PA; Harvey JN; Rutherford PA; Leitch H; Thomas TH
    Clin Sci (Lond); 2005 Mar; 108(3):231-6. PubMed ID: 15554870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of hemodialysis on the transport of sodium in erythrocytes from chronic renal failure patients maintained on hemodialysis.
    Gambhir KK; Parui R; Agarwal V; Cruz I
    Life Sci; 2002 Aug; 71(14):1615-21. PubMed ID: 12137908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations on the control of ion transport in human erythrocytes. II. Influence of transmembrane potential, exterior surface potential and intracellular pH on the 22Na efflux.
    Bernhardt I; Glaser R
    Acta Biol Med Ger; 1982; 41(6):541-7. PubMed ID: 7148265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of adrenergic stimulation on transmembrane transport of Na+ in patients with essential hypertension].
    Saitta A; Saitta MN; Messina A; Bonaiuto M; Cinquegrani M; Squadrito G; Castaldo M; Sardo A; Imbalzano E; Squadrito F
    Minerva Med; 1997; 88(7-8):275-82. PubMed ID: 9304069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coexisting independent sodium-sensitive and sodium-insensitive mechanisms of genetic hypertension in spontaneously hypertensive rats (SHR).
    Wells IC; Blotcky AJ
    Can J Physiol Pharmacol; 2001 Sep; 79(9):779-84. PubMed ID: 11599778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-Cysteine Uptake is Stimulated by 1-Chloro-2,4-Dinitrobenzene in vitro in Human Erythrocytes.
    Yildiz D; Bagdadioglu T
    Toxicol Mech Methods; 2004; 14(4):241-5. PubMed ID: 20021137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amiloride-sensitive sodium transport in lamprey red blood cells: evidence for two distinct transport pathways.
    Gusev GP; Ivanova TI
    Gen Physiol Biophys; 2004 Dec; 23(4):443-56. PubMed ID: 15815079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urinary free cortisol is not a biochemical marker of hypertension.
    Krall P; Carvajal C; Ortiz E; Muñoz C; Garrido JL; Mosso L; Fardella C
    Am J Hypertens; 2007 Apr; 20(4):459-65. PubMed ID: 17386356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-hypertensive effect of low Na connection (120 mEq/l) solution for CAPD patients.
    Nakayama M; Kawaguchi Y; Yokoyama K; Kubo H; Miura Y; Watanabe S; Sakai O
    Clin Nephrol; 1994 Jun; 41(6):357-63. PubMed ID: 8076439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simpler procedure to study sodium-22 uptake (ouabain insensitive) in human erythrocytes.
    Gambhir KK; Parui R; Nerurkar SG; Dave N; Mathews J; Mehrotra PP; Curry CL
    Clin Biochem; 1988 Jun; 21(3):163-5. PubMed ID: 3390905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diminished L-arginine bioavailability in hypertension.
    Moss MB; Brunini TM; Soares De Moura R; Novaes Malagris LE; Roberts NB; Ellory JC; Mann GE; Mendes Ribeiro AC
    Clin Sci (Lond); 2004 Oct; 107(4):391-7. PubMed ID: 15182236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of beta blockade on the erythrocyte transport of Na+: evaluation during stimulation by cold pressure test in patients with essential hypertension].
    Saitta A; Saitta MN; Bonaiuto M; Castaldo M; Sardo A; Messina A; Cinquegrani M; Squadrito G; Campo GM; Squadrito F
    Clin Ter; 1997; 148(5-6):237-47. PubMed ID: 9377859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Transport of ions across alveolar epithelial cells in resected human lungs].
    Sakuma T; Suzuki S; Usuda K; Handa M; Okaniwa G; Nakada T; Fujimura S
    Nihon Kyobu Shikkan Gakkai Zasshi; 1995 Sep; 33(9):966-72. PubMed ID: 8538092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net influx and efflux of 22Na in erythrocytes from normotensive offspring of patients with essential hypertension.
    Henningsen NC; Nelson D
    Acta Med Scand; 1981; 210(1-2):85-91. PubMed ID: 6117192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Na+ and K+ permeability of erythrocyte membranes and their phospholipid composition in hypertension patients].
    Nadiradze NI; Grekulova AN; Kavtaradze VG
    Biull Eksp Biol Med; 1993 Feb; 115(2):135-7. PubMed ID: 8043783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The characterization of ion regulation in Amazonian mosquito larvae: evidence of phenotypic plasticity, population-based disparity, and novel mechanisms of ion uptake.
    Patrick ML; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL
    Physiol Biochem Zool; 2002; 75(3):223-36. PubMed ID: 12177826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythrocyte Na/K-ATPase is increased in subjects with subclinical hypothyroidism.
    Nicolini G; Balzan S; Colzani R; Scarlattini M; Taddei MC; Iervasi G
    Clin Endocrinol (Oxf); 2004 Jun; 60(6):705-10. PubMed ID: 15163334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.