These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7834332)

  • 1. Picrotoxin-induced epileptic activity in hippocampal and neocortical slices (guinea pig): suppression by organic calcium channel blockers.
    Straub H; Köhling R; Speckmann EJ
    Brain Res; 1994 Sep; 658(1-2):119-26. PubMed ID: 7834332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strychnine-induced epileptiform activity in hippocampal and neocortical slice preparations: suppression by the organic calcium antagonists verapamil and flunarizine.
    Straub H; Köhling R; Speckmann EJ
    Brain Res; 1997 Oct; 773(1-2):173-80. PubMed ID: 9409718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flunarizine shows increased antiepileptic efficacy with elevated K+ levels in low magnesium induced epileptic activity (neocortical slices, guinea pig).
    Schulze-Bonhage A; Köhling R; Straub H; Speckmann EJ
    Neuropharmacology; 1994 May; 33(5):613-8. PubMed ID: 7936095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of verapamil and flunarizine on epileptiform activity induced by bicuculline and low Mg2+ in neocortical tissue of epileptic and primary non-epileptic patients.
    Straub H; Köhling R; Lüke A; Fauteck JD; Speckmann EJ; Moskopp D; Wassmann H; Tuxhorn I; Wolf P; Pannek H; Oppel F
    Brain Res; 1996 Sep; 733(2):307-11. PubMed ID: 8891316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low magnesium-induced epileptiform discharges in guinea pig hippocampal slices: depression by the organic calcium antagonist verapamil.
    Pohl M; Straub H; Speckmann EJ
    Brain Res; 1992 Apr; 577(1):29-35. PubMed ID: 1521145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific suppression of pentylenetetrazol-induced epileptiform discharges in CA3 neurons (hippocampal slice, guinea pig) by the organic calcium antagonists flunarizine and verapamil.
    Bingmann D; Speckmann EJ
    Exp Brain Res; 1989; 74(2):239-48. PubMed ID: 2924845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paroxysmal depolarization shifts induced by bicuculline in CA3 neurons of hippocampal slices: suppression by the organic calcium antagonist verapamil.
    Straub H; Speckmann EJ; Bingmann D; Walden J
    Neurosci Lett; 1990 Mar; 111(1-2):99-101. PubMed ID: 2336199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous and stimulus-triggered epileptic discharges: delayed antiepileptic effect with triggering.
    Köhling R; Straub H; Speckmann EJ
    Exp Brain Res; 1994; 100(3):376-84. PubMed ID: 7813676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential antiepileptic effects of the organic calcium antagonists verapamil and flunarizine in neurons of organotypic neocortical explants from newborn rats.
    Bingmann D; Speckmann EJ; Baker RE; Ruijter J; de Jong BM
    Exp Brain Res; 1988; 72(2):439-42. PubMed ID: 3224653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of verapamil and flunarizine on cardiac L-type and T-type Ca channels.
    Tytgat J; Vereecke J; Carmeliet E
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Jun; 337(6):690-2. PubMed ID: 2851108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caffeine-induced epileptic discharges in CA3 neurons of hippocampal slices of the guinea pig.
    Moraidis I; Bingmann D; Lehmenkühler A; Speckmann EJ
    Neurosci Lett; 1991 Aug; 129(1):51-4. PubMed ID: 1922970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low magnesium induced epileptiform discharges in neocortical slices (guinea pig): increased antiepileptic efficacy of organic calcium antagonist verapamil with elevation of extracellular K+ concentration.
    Straub H; Köhling R; Speckmann EJ
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 Sep; 103(1):57-63. PubMed ID: 1360377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of calcium spikes revealed during GABAA receptor antagonism in hippocampal CA1 neurons from guinea pigs.
    Miura M; Yoshioka M; Miyakawa H; Kato H; Ito KI
    J Neurophysiol; 1997 Nov; 78(5):2269-79. PubMed ID: 9356380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Background potassium concentrations and epileptiform discharges. II. Involvement of calcium channels.
    Gorji A; Moddel G; Speckmann EJ
    Brain Res; 2003 Jan; 959(1):149-59. PubMed ID: 12480168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lowering of the potassium concentration induces epileptiform activity in guinea-pig hippocampal slices.
    Gorji A; Madeja M; Straub H; Köhling R; Speckmann EJ
    Brain Res; 2001 Jul; 908(2):130-9. PubMed ID: 11454323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of calcium and calcium antagonists against deprivation of glucose and oxygen in guinea pig hippocampal slices.
    Amagasa M; Ogawa A; Yoshimoto T
    Brain Res; 1990 Aug; 526(1):1-7. PubMed ID: 2078810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of L-type calcium channels to epileptiform activity in hippocampal and neocortical slices of guinea-pigs.
    Straub H; Köhling R; Frieler A; Grigat M; Speckmann EJ
    Neuroscience; 2000; 95(1):63-72. PubMed ID: 10619462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ineffectiveness of organic calcium channel blockers in antagonizing long-term potentiation.
    Taube JS; Schwartzkroin PA
    Brain Res; 1986 Aug; 379(2):275-85. PubMed ID: 3017511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic and inorganic calcium antagonists inhibit veratridine-induced epileptiform activity in CA3 neurons of the guinea pig.
    Link MC; Wiemann M; Bingmann D
    Epilepsy Res; 2008 Feb; 78(2-3):147-54. PubMed ID: 18083347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antiepileptic effects of cobalt, manganese and magnesium on bicuculline-induced epileptiform activity in hippocampal neurons.
    Saft C; Speckmann EJ
    Brain Res; 2020 Apr; 1732():146684. PubMed ID: 32001242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.