BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 7834578)

  • 21. Indirect measurement of mitochondrial proton leak and its application.
    Porter RK; Joyce OJ; Farmer MK; Heneghan R; Tipton KF; Andrews JF; McBennett SM; Lund MD; Jensen CH; Melia HP
    Int J Obes Relat Metab Disord; 1999 Jun; 23 Suppl 6():S12-8. PubMed ID: 10454115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Top-down control analysis of the effect of temperature on ectotherm oxidative phosphorylation.
    Chamberlin ME
    Am J Physiol Regul Integr Comp Physiol; 2004 Oct; 287(4):R794-800. PubMed ID: 15191905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mechanism of the increase in mitochondrial proton permeability induced by thyroid hormones.
    Brand MD; Steverding D; Kadenbach B; Stevenson PM; Hafner RP
    Eur J Biochem; 1992 Jun; 206(3):775-81. PubMed ID: 1318835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of respiration and oxidative phosphorylation in isolated rat liver cells.
    Brown GC; Lakin-Thomas PL; Brand MD
    Eur J Biochem; 1990 Sep; 192(2):355-62. PubMed ID: 2209591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory.
    Hafner RP; Brown GC; Brand MD
    Eur J Biochem; 1990 Mar; 188(2):313-9. PubMed ID: 2156698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localisation of the sites of action of cadmium on oxidative phosphorylation in potato tuber mitochondria using top-down elasticity analysis.
    Kesseler A; Brand MD
    Eur J Biochem; 1994 Nov; 225(3):897-906. PubMed ID: 7957227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mechanism of stimulation of respiration by fatty acids in isolated hepatocytes.
    Nobes CD; Hay WW; Brand MD
    J Biol Chem; 1990 Aug; 265(22):12910-5. PubMed ID: 2376580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of 3,5-di-iodo-L-thyronine on the mitochondrial energy-transduction apparatus.
    Lombardi A; Lanni A; Moreno M; Brand MD; Goglia F
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):521-6. PubMed ID: 9461551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR.
    Rolfe DF; Newman JM; Buckingham JA; Clark MG; Brand MD
    Am J Physiol; 1999 Mar; 276(3):C692-9. PubMed ID: 10069997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative phosphorylation by in situ synaptosomal mitochondria from whole brain of young and old rats.
    Joyce OJ; Farmer MK; Tipton KF; Porter RK
    J Neurochem; 2003 Aug; 86(4):1032-41. PubMed ID: 12887700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton leak and control of oxidative phosphorylation in perfused, resting rat skeletal muscle.
    Rolfe DF; Brand MD
    Biochim Biophys Acta; 1996 Aug; 1276(1):45-50. PubMed ID: 8764890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulation by thyroid hormone of coupled respiration and of respiration apparently not coupled to the synthesis of ATP in rat hepatocytes.
    Gregory RB; Berry MN
    J Biol Chem; 1992 May; 267(13):8903-8. PubMed ID: 1577728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-term calorie restriction reduces proton leak and hydrogen peroxide production in liver mitochondria.
    Hagopian K; Harper ME; Ram JJ; Humble SJ; Weindruch R; Ramsey JJ
    Am J Physiol Endocrinol Metab; 2005 Apr; 288(4):E674-84. PubMed ID: 15562252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thyroid status is a key regulator of both flux and efficiency of oxidative phosphorylation in rat hepatocytes.
    Nogueira V; Walter L; Avéret N; Fontaine E; Rigoulet M; Leverve XM
    J Bioenerg Biomembr; 2002 Feb; 34(1):55-66. PubMed ID: 11860181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production.
    Bevilacqua L; Ramsey JJ; Hagopian K; Weindruch R; Harper ME
    Am J Physiol Endocrinol Metab; 2004 May; 286(5):E852-61. PubMed ID: 14736705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The responses of rat hepatocytes to glucagon and adrenaline. Application of quantified elasticity analysis.
    Ainscow EK; Brand MD
    Eur J Biochem; 1999 Nov; 265(3):1043-55. PubMed ID: 10518800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship between the resting metabolic rate and hepatic metabolism in rats: effect of hyperthyroidism and fasting for 24 hours.
    Iossa S; Liverini G; Barletta A
    J Endocrinol; 1992 Oct; 135(1):45-51. PubMed ID: 1431681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
    Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM
    Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thyroid-hormone control of state-3 respiration in isolated rat liver mitochondria.
    Hafner RP; Brown GC; Brand MD
    Biochem J; 1990 Feb; 265(3):731-4. PubMed ID: 2306210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.