These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 7834794)

  • 1. Microsomal and peroxidase activation of 4-hydroxy-tamoxifen to form DNA adducts: comparison with DNA adducts formed in Sprague-Dawley rats treated with tamoxifen.
    Pathak DN; Pongracz K; Bodell WJ
    Carcinogenesis; 1995 Jan; 16(1):11-5. PubMed ID: 7834794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA adduct formation by tamoxifen with rat and human liver microsomal activation systems.
    Pathak DN; Bodell WJ
    Carcinogenesis; 1994 Mar; 15(3):529-32. PubMed ID: 8118938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the tamoxifen derivative metabolite E to form DNA adducts: comparison with the adducts formed by microsomal activation of tamoxifen.
    Pongracz K; Pathak DN; Nakamura T; Burlingame AL; Bodell WJ
    Cancer Res; 1995 Jul; 55(14):3012-5. PubMed ID: 7606720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of 4-hydroxytamoxifen and the tamoxifen derivative metabolite E by uterine peroxidase to form DNA adducts: comparison with DNA adducts formed in the uterus of Sprague-Dawley rats treated with tamoxifen.
    Pathak DN; Pongracz K; Bodell WJ
    Carcinogenesis; 1996 Sep; 17(9):1785-90. PubMed ID: 8824496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tamoxifen: evidence by 32P-postlabeling and use of metabolic inhibitors for two distinct pathways leading to mouse hepatic DNA adduct formation and identification of 4-hydroxytamoxifen as a proximate metabolite.
    Randerath K; Moorthy B; Mabon N; Sriram P
    Carcinogenesis; 1994 Oct; 15(10):2087-94. PubMed ID: 7955037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of 8-hydroxy-2'-deoxguanosine in DNA by microsomal activation of tamoxifen and 4-hydroxytamoxifen.
    Ye Q; Bodell WJ
    Carcinogenesis; 1996 Aug; 17(8):1747-50. PubMed ID: 8761436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of DNA adducts by microsomal and peroxidase activation of p-cresol: role of quinone methide in DNA adduct formation.
    Gaikwad NW; Bodell WJ
    Chem Biol Interact; 2001 Dec; 138(3):217-29. PubMed ID: 11714480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tamoxifen metabolic activation: comparison of DNA adducts formed by microsomal and chemical activation of tamoxifen and 4-hydroxytamoxifen with DNA adducts formed in vivo.
    Moorthy B; Sriram P; Pathak DN; Bodell WJ; Randerath K
    Cancer Res; 1996 Jan; 56(1):53-7. PubMed ID: 8548775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tamoxifen-DNA adduct formation in rat liver determined by immunoassay and 32P-postlabeling.
    Divi RL; Osborne MR; Hewer A; Phillips DH; Poirier MC
    Cancer Res; 1999 Oct; 59(19):4829-33. PubMed ID: 10519392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA adducts caused by tamoxifen and toremifene in human microsomal system and lymphocytes in vitro.
    Hemminki K; Widlak P; Hou SM
    Carcinogenesis; 1995 Jul; 16(7):1661-4. PubMed ID: 7614704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunohistochemical localization and semi-quantitation of hepatic tamoxifen-DNA adducts in rats exposed orally to tamoxifen.
    Divi RL; Dragan YP; Pitot HC; Poirier MC
    Carcinogenesis; 2001 Oct; 22(10):1693-9. PubMed ID: 11577011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peroxidase-mediated dealkylation of tamoxifen, detected by electrospray ionization-mass spectrometry, and activation to form DNA adducts.
    Gaikwad NW; Bodell WJ
    Free Radic Biol Med; 2012 Jan; 52(2):340-7. PubMed ID: 22064363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 32P-postlabeling analysis of benzo[a]pyrene-DNA adducts formed in vitro and in vivo.
    Bodell WJ; Devanesan PD; Rogan EG; Cavalieri EL
    Chem Res Toxicol; 1989; 2(5):312-5. PubMed ID: 2519823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-chromatography of a tamoxifen epoxide-deoxyguanylic acid adduct with a major DNA adduct formed in the livers of tamoxifen-treated rats.
    Phillips DH; Hewer A; White IN; Farmer PB
    Carcinogenesis; 1994 May; 15(5):793-5. PubMed ID: 8200077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that the catechol 3,4-Dihydroxytamoxifen is a proximate intermediate to the reactive species binding covalently to proteins.
    Dehal SS; Kupfer D
    Cancer Res; 1996 Mar; 56(6):1283-90. PubMed ID: 8640815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of tamoxifen-DNA adducts via O-sulfonation, not O-acetylation, of alpha-hydroxytamoxifen in rat and human livers.
    Kim SY; Laxmi YR; Suzuki N; Ogura K; Watabe T; Duffel MW; Shibutani S
    Drug Metab Dispos; 2005 Nov; 33(11):1673-8. PubMed ID: 16099924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examination of microsomal cytochrome P450-catalyzed in vitro activation of o-phenylphenol to DNA binding metabolite(s) by 32P-postlabeling technique.
    Pathak DN; Roy D
    Carcinogenesis; 1992 Sep; 13(9):1593-7. PubMed ID: 1394845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 32P-postlabeling analysis of adducts generated by peroxidase-mediated binding of N-hydroxy-4-acetylaminobiphenyl to DNA.
    Hatcher JF; Swaminathan S
    Carcinogenesis; 1995 Sep; 16(9):2149-57. PubMed ID: 7554068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of eugenol to form DNA adducts and 8-hydroxy-2'-deoxyguanosine: role of quinone methide derivative in DNA adduct formation.
    Bodell WJ; Ye Q; Pathak DN; Pongracz K
    Carcinogenesis; 1998 Mar; 19(3):437-43. PubMed ID: 9525278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of tamoxifen-DNA adducts in multiple organs of adult female cynomolgus monkeys dosed with tamoxifen for 30 days.
    Schild LJ; Divi RL; Beland FA; Churchwell MI; Doerge DR; Gamboa da Costa G; Marques MM; Poirier MC
    Cancer Res; 2003 Sep; 63(18):5999-6003. PubMed ID: 14522927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.