These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7834991)

  • 1. Metabolic abnormalities in skeletal muscle after myocardial infarction in the rat.
    Thompson CH; Kemp GJ; Rajagopalan B; Radda GK
    Clin Sci (Lond); 1994 Oct; 87(4):403-6. PubMed ID: 7834991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rat skeletal muscle metabolism in experimental heart failure: effects of physical training.
    Brunotte F; Thompson CH; Adamopoulos S; Coats A; Unitt J; Lindsay D; Kaklamanis L; Radda GK; Rajagopalan B
    Acta Physiol Scand; 1995 Aug; 154(4):439-47. PubMed ID: 7484170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of in vivo postexercise phosphocreatine recovery and resting ATP synthesis flux for the assessment of skeletal muscle mitochondrial function.
    van den Broek NM; Ciapaite J; Nicolay K; Prompers JJ
    Am J Physiol Cell Physiol; 2010 Nov; 299(5):C1136-43. PubMed ID: 20668212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis.
    Thompson CH; Kemp GJ; Sanderson AL; Radda GK
    J Appl Physiol (1985); 1995 Jun; 78(6):2131-9. PubMed ID: 7665409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abnormal ATP turnover in rat leg muscle during exercise and recovery following myocardial infarction.
    Thompson CH; Kemp GJ; Rajagopalan B; Radda GK
    Cardiovasc Res; 1995 Mar; 29(3):344-9. PubMed ID: 7781009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of exercise training on brain-derived neurotrophic factor in skeletal muscle and heart of rats post myocardial infarction.
    Lee HW; Ahmad M; Wang HW; Leenen FH
    Exp Physiol; 2017 Mar; 102(3):314-328. PubMed ID: 28070911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance spectroscopy in congenital heart disease.
    Miall-Allen VM; Kemp GJ; Rajagopalan B; Taylor DJ; Radda GK; Haworth SG
    Heart; 1996 Jun; 75(6):614-9. PubMed ID: 8697167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The time course of haemodynamic, autonomic and skeletal muscle metabolic abnormalities following first extensive myocardial infarction in man.
    Adamopoulos S; Kemp GJ; Thompson CH; Arnolda L; Brunotte F; Stratton JR; Radda GK; Rajagopalan B; Kremastinos DT; Coats AJ
    J Mol Cell Cardiol; 1999 Oct; 31(10):1913-26. PubMed ID: 10525428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of long-term caloric restriction and exercise on muscle bioenergetics and force development in rats.
    Horská A; Brant LJ; Ingram DK; Hansford RG; Roth GS; Spencer RG
    Am J Physiol; 1999 Apr; 276(4):E766-73. PubMed ID: 10198315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A non-invasive selective assessment of type I fibre mitochondrial function using 31P NMR spectroscopy. Evidence for impaired oxidative phosphorylation rate in skeletal muscle in patients with chronic heart failure.
    van der Ent M; Jeneson JA; Remme WJ; Berger R; Ciampricotti R; Visser F
    Eur Heart J; 1998 Jan; 19(1):124-31. PubMed ID: 9503185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphocreatine synthesis by isolated rat skeletal muscle mitochondria is not dependent upon external ADP: a 31P NMR study.
    Kernec F; Le Tallec N; Nadal L; Bégué JM; Le Rumeur E
    Biochem Biophys Res Commun; 1996 Aug; 225(3):819-25. PubMed ID: 8780696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormalities in exercising skeletal muscle in congestive heart failure can be explained in terms of decreased mitochondrial ATP synthesis, reduced metabolic efficiency, and increased glycogenolysis.
    Kemp GJ; Thompson CH; Stratton JR; Brunotte F; Conway M; Adamopoulos S; Arnolda L; Radda GK; Rajagopalan B
    Heart; 1996 Jul; 76(1):35-41. PubMed ID: 8774325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between increased peak oxygen uptake and modifications in skeletal muscle metabolism following rehabilitation after myocardial infarction.
    Cottin Y; Walker P; Rouhier-Marcer I; Cohen M; Louis P; Didier JP; Casillas JM; Wolf JE; Brunotte F
    J Cardiopulm Rehabil; 1996; 16(3):169-74. PubMed ID: 8761837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The duration of infection modifies mitochondrial oxidative capacity in rat skeletal muscle.
    Mizobata Y; Prechek D; Rounds JD; Robinson V; Wilmore DW; Jacobs DO
    J Surg Res; 1995 Jul; 59(1):165-73. PubMed ID: 7630122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial respiration in creatine-loaded muscle: is there 31P-MRS evidence of direct effects of phosphocreatine and creatine in vivo?
    Kemp G
    J Appl Physiol (1985); 2006 Apr; 100(4):1428-9; author reply 1429-30. PubMed ID: 16540719
    [No Abstract]   [Full Text] [Related]  

  • 16. Contribution of specific skeletal muscle metabolic abnormalities to limitation of exercise capacity in patients with chronic heart failure: a phosphorus 31 nuclear magnetic resonance study.
    Chati Z; Zannad F; Robin-Lherbier B; Escanye JM; Jeandel C; Robert J; Aliot E
    Am Heart J; 1994 Oct; 128(4):781-92. PubMed ID: 7942449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of iron deficiency on skeletal muscle metabolism of the rat.
    Thompson CH; Green YS; Ledingham JG; Radda GK; Rajagopalan B
    Acta Physiol Scand; 1993 Jan; 147(1):85-90. PubMed ID: 8452045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 31P nuclear magnetic resonance spectroscopic imaging of regions of remodeled myocardium in the infarcted rat heart.
    Friedrich J; Apstein CS; Ingwall JS
    Circulation; 1995 Dec; 92(12):3527-38. PubMed ID: 8521576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle metabolism in myotonic dystrophy A 31P magnetic resonance spectroscopy study.
    Barnes PR; Kemp GJ; Taylor DJ; Radda GK
    Brain; 1997 Oct; 120 ( Pt 10)():1699-711. PubMed ID: 9365364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle.
    Pipinos II; Shepard AD; Anagnostopoulos PV; Katsamouris A; Boska MD
    J Vasc Surg; 2000 May; 31(5):944-52. PubMed ID: 10805885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.