BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 7836160)

  • 1. Physiological dead space increases during initial hours of chronic hypoxemia with or without hypocapnia.
    Olson EB
    J Appl Physiol (1985); 1994 Sep; 77(3):1526-31. PubMed ID: 7836160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological dead space and arterial carbon dioxide contributions to exercise ventilatory inefficiency in patients with reduced or preserved ejection fraction heart failure.
    Van Iterson EH; Johnson BD; Borlaug BA; Olson TP
    Eur J Heart Fail; 2017 Dec; 19(12):1675-1685. PubMed ID: 28990307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When does apparatus dead space matter for the pediatric patient?
    Pearsall MF; Feldman JM
    Anesth Analg; 2014 Apr; 118(4):776-80. PubMed ID: 24651232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carotid body excision significantly changes ventilatory control in awake rats.
    Olson EB; Vidruk EH; Dempsey JA
    J Appl Physiol (1985); 1988 Feb; 64(2):666-71. PubMed ID: 3372424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological insights of exercise hyperventilation in arterial and chronic thromboembolic pulmonary hypertension.
    Farina S; Bruno N; Agalbato C; Contini M; Cassandro R; Elia D; Harari S; Agostoni P
    Int J Cardiol; 2018 May; 259():178-182. PubMed ID: 29579597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anatomical dead space, ventilatory pattern, and exercise capacity in chronic heart failure.
    Clark AL; Chua TP; Coats AJ
    Br Heart J; 1995 Oct; 74(4):377-80. PubMed ID: 7488450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential contribution of dead space ventilation and low arterial pCO2 to exercise hyperpnea in patients with chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy.
    Wensel R; Georgiadou P; Francis DP; Bayne S; Scott AC; Genth-Zotz S; Anker SD; Coats AJ; Piepoli MF
    Am J Cardiol; 2004 Feb; 93(3):318-23. PubMed ID: 14759381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring Dead Space in Mechanically Ventilated Children: Volumetric Capnography Versus Time-Based Capnography.
    Bhalla AK; Rubin S; Newth CJ; Ross P; Morzov R; Soto-Campos G; Khemani R
    Respir Care; 2015 Nov; 60(11):1548-55. PubMed ID: 26199451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of high-intensity exercise on the VE-VCO2 relationship.
    Caiozzo VJ; Davis JA; Berriman DJ; Vandagriff RB; Prietto CA
    J Appl Physiol (1985); 1987 Apr; 62(4):1460-4. PubMed ID: 3110120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive measurement of mean alveolar carbon dioxide tension and Bohr's dead space during tidal breathing.
    Koulouris NG; Latsi P; Dimitroulis J; Jordanoglou B; Gaga M; Jordanoglou J
    Eur Respir J; 2001 Jun; 17(6):1167-74. PubMed ID: 11491160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of carotid body hypocapnia during ventilatory acclimatization to hypoxia.
    Dwinell MR; Janssen PL; Pizarro J; Bisgard GE
    J Appl Physiol (1985); 1997 Jan; 82(1):118-24. PubMed ID: 9029206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ventilatory control during exercise with increased external dead space.
    Ward SA; Whipp BJ
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Feb; 48(2):225-31. PubMed ID: 6767666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic-ventilatory interaction in conscious rats: effect of hypoxia and ambient temperature.
    Saiki C; Matsuoka T; Mortola JP
    J Appl Physiol (1985); 1994 Apr; 76(4):1594-9. PubMed ID: 8045837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rat as a model for humanlike ventilatory adaptation to chronic hypoxia.
    Olson EB; Dempsey JA
    J Appl Physiol Respir Environ Exerc Physiol; 1978 May; 44(5):763-9. PubMed ID: 649477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of hypoxemia and hypocapnia in pulmonary embolism.
    Santolicandro A; Prediletto R; Fornai E; Formichi B; Begliomini E; Giannella-Neto A; Giuntini C
    Am J Respir Crit Care Med; 1995 Jul; 152(1):336-47. PubMed ID: 7599843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous brain erythropoietin is a potent sex-specific respiratory stimulant in adult and newborn mice.
    Ballot O; Joseph V; Soliz J
    J Appl Physiol (1985); 2015 Jun; 118(11):1386-95. PubMed ID: 25792712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relation of ventilation to metabolic rate during moderate exercise in man.
    Davis JA; Whipp BJ; Wasserman K
    Eur J Appl Physiol Occup Physiol; 1980; 44(2):97-108. PubMed ID: 6773760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying hypoxia-induced chemoreceptor sensitivity in the awake rodent.
    Morgan BJ; Adrian R; Bates ML; Dopp JM; Dempsey JA
    J Appl Physiol (1985); 2014 Oct; 117(7):816-24. PubMed ID: 25080926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing the Effects of Two Different Levels of Hyperoxygenation on Gas Exchange During Open Endotracheal Suctioning: A Randomized Crossover Study.
    Vianna JR; Pires Di Lorenzo VA; Simões MM; Jamami M
    Respir Care; 2017 Jan; 62(1):92-101. PubMed ID: 28003557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carotid bodies are required for ventilatory acclimatization to chronic hypoxia.
    Smith CA; Bisgard GE; Nielsen AM; Daristotle L; Kressin NA; Forster HV; Dempsey JA
    J Appl Physiol (1985); 1986 Mar; 60(3):1003-10. PubMed ID: 3082845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.