BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7836217)

  • 1. Ventilatory and hyperkalemic responses to incremental exercise after propranolol treatment.
    Schneider DA; McEniery MT; Solomon C; Jurimae J; Wehr MS
    J Appl Physiol (1985); 1994 Oct; 77(4):1907-12. PubMed ID: 7836217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma catecholamine and ventilatory responses to cycling after propranolol treatment.
    Schneider DA; Kamimori GH; Wu SY; McEniery MT; Solomon C
    Med Sci Sports Exerc; 1995 Dec; 27(12):1616-20. PubMed ID: 8614316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise-induced changes in plasma potassium and the ventilatory threshold in man.
    McLoughlin P; Popham P; Linton RA; Bruce RC; Band DM
    J Physiol; 1994 Aug; 479 ( Pt 1)(Pt 1):139-47. PubMed ID: 7990030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between ventilation and arterial potassium concentration during incremental exercise and recovery.
    Yoshida T; Chida M; Ichioka M; Makiguchi K; Eguchi J; Udo M
    Eur J Appl Physiol Occup Physiol; 1990; 61(3-4):193-6. PubMed ID: 2126506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of beta-adrenergic blockade on ventilation and gas exchange during incremental exercise.
    Dodd S; Powers S; O'Malley N; Brooks E; Sommers H
    Aviat Space Environ Med; 1988 Aug; 59(8):718-22. PubMed ID: 3178619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium and ventilation during incremental exercise in trained and untrained men.
    McCoy M; Hargreaves M
    J Appl Physiol (1985); 1992 Oct; 73(4):1287-90. PubMed ID: 1447071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation between plasma K+ and ventilation during incremental exercise after glycogen depletion and repletion in man.
    Busse MW; Maassen N; Konrad H
    J Physiol; 1991 Nov; 443():469-76. PubMed ID: 1822534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between plasma potassium and ventilation during successive periods of exercise in men.
    Busse MW; Scholz J; Saxler F; Maassen N; Böning D
    Eur J Appl Physiol Occup Physiol; 1992; 64(1):22-5. PubMed ID: 1735406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventilatory response and arterial potassium concentration during incremental exercise in patients with chronic airways obstruction.
    Yoshida T; Chida M; Ichioka M; Makiguchi K; Tojo N; Udo M
    Clin Physiol; 1991 Jan; 11(1):73-82. PubMed ID: 2019080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. K+ shifts of skeletal muscle during stepwise bicycle exercise with and without beta-adrenoceptor blockade.
    Hallén J; Gullestad L; Sejersted OM
    J Physiol; 1994 May; 477(Pt 1):149-59. PubMed ID: 8071881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of beta-adrenergic blockade on respiratory and metabolic responses to exercise.
    Twentyman OP; Disley A; Gribbin HR; Alberti KG; Tattersfield AE
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Oct; 51(4):788-93. PubMed ID: 6795164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of physical training on exercise-induced hyperkalemia in chronic heart failure. Relation with ventilation and catecholamines.
    Barlow CW; Qayyum MS; Davey PP; Conway J; Paterson DJ; Robbins PA
    Circulation; 1994 Mar; 89(3):1144-52. PubMed ID: 8124801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of beta-adrenergic blockade on response to exercise in sedentary and active subjects.
    Brusasco V; Violante B; Buccheri G
    J Appl Physiol (1985); 1989 Jul; 67(1):103-9. PubMed ID: 2503490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of acute vs chronic treatment with beta-adrenoceptor blockade on exercise performance, haemodynamic and metabolic parameters in healthy men and women.
    Gullestad L; Hallen J; Medbø JI; Grønnerød O; Holme I; Sejersted OM
    Br J Clin Pharmacol; 1996 Jan; 41(1):57-67. PubMed ID: 8824694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of progressive incremental exercise and beta-adrenergic blockade on erythrocyte ion concentrations.
    McKelvie RS; Jones NL; Heigenhauser GJ
    Can J Physiol Pharmacol; 1997 Jan; 75(1):19-25. PubMed ID: 9101061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VE and VCO2 remain tightly coupled during incremental cycling performed after a bout of high-intensity exercise.
    Schneider DA; Berwick JP
    Eur J Appl Physiol Occup Physiol; 1998; 77(1-2):72-6. PubMed ID: 9459524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of beta-adrenergic blockade on ventilation and gas exchange during the rest to work transition.
    Dodd S; Powers S; O'Malley N; Brooks E; Sommers H
    Aviat Space Environ Med; 1988 Mar; 59(3):255-8. PubMed ID: 3128261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beta-blockade reduces tidal volume during heavy exercise in trained and untrained men.
    Joyner MJ; Jilka SM; Taylor JA; Kalis JK; Nittolo J; Hicks RW; Lohman TG; Wilmore JH
    J Appl Physiol (1985); 1987 May; 62(5):1819-25. PubMed ID: 2885301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interrelationship between pH, plasma potassium concentration and ventilation during intense continuous exercise in man.
    Busse MW; Maassen N; Konrad H; Böning D
    Eur J Appl Physiol Occup Physiol; 1989; 59(4):256-61. PubMed ID: 2511013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventilation parallels plasma potassium during incremental and continuous variable intensity exercise.
    Yaspelkis BB; Anderla PA; Patterson JG; Ivy JL
    Int J Sports Med; 1994 Nov; 15(8):460-5. PubMed ID: 7890458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.