BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7836669)

  • 21. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo.
    Joannides R; Haefeli WE; Linder L; Richard V; Bakkali EH; Thuillez C; Lüscher TF
    Circulation; 1995 Mar; 91(5):1314-9. PubMed ID: 7867167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The cerebral basal arterial network: morphometry of inflow and outflow components.
    Burlakoti A; Kumaratilake J; Taylor J; Massy-Westropp N; Henneberg M
    J Anat; 2017 Jun; 230(6):833-841. PubMed ID: 28370065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vasodilatory effect of arginine vasopressin is mediated by nitric oxide in human forearm vessels.
    Tagawa T; Imaizumi T; Endo T; Shiramoto M; Hirooka Y; Ando S; Takeshita A
    J Clin Invest; 1993 Sep; 92(3):1483-90. PubMed ID: 8376600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart.
    Quyyumi AA; Dakak N; Andrews NP; Gilligan DM; Panza JA; Cannon RO
    Circulation; 1995 Aug; 92(3):320-6. PubMed ID: 7634444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Possible role of nitric oxide in transmitting information from vasodilator nerve to cerebroarterial muscle.
    Toda N; Okamura T
    Biochem Biophys Res Commun; 1990 Jul; 170(1):308-13. PubMed ID: 2164808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. L-NAME antagonizes vasopressin V2-induced vasodilatation in dogs.
    Liard JF
    Am J Physiol; 1994 Jan; 266(1 Pt 2):H99-106. PubMed ID: 8304528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cerebral vasodilatory effect of high-dose, intravascular endothelin-1: inhibition by NG-monomethyl-L-arginine.
    Kobari M; Fukuuchi Y; Tomita M; Tanahashi N; Konno S; Takeda H
    J Auton Nerv Syst; 1994 Sep; 49 Suppl():S111-5. PubMed ID: 7836666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitric oxide does not mediate flow induced endothelium dependent arterial dilatation in the cat.
    Melkumyants AM; Balashov SA; Klimachev AN; Kartamyshev SP; Khayutin VM
    Cardiovasc Res; 1992 Mar; 26(3):256-60. PubMed ID: 1423421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relaxation of human isolated mesenteric arteries by vasopressin and desmopressin.
    Martínez MC; Vila JM; Aldasoro M; Medina P; Flor B; Lluch S
    Br J Pharmacol; 1994 Oct; 113(2):419-24. PubMed ID: 7834191
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modification by L-NG-monomethyl arginine (L-NMMA) of the response to nerve stimulation in isolated dog mesenteric and cerebral arteries.
    Toda N; Okamura T
    Jpn J Pharmacol; 1990 Jan; 52(1):170-3. PubMed ID: 2308238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the inhibitory potencies of N(G)-methyl-, N(G)-nitro- and N(G)-amino-L-arginine on EDRF function in the rat: evidence for continuous basal EDRF release.
    Vargas HM; Cuevas JM; Ignarro LJ; Chaudhuri G
    J Pharmacol Exp Ther; 1991 Jun; 257(3):1208-15. PubMed ID: 1646327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intra-arterial vasopressin in the human forearm: pharmacodynamics and the role of nitric oxide.
    Affolter JT; McKee SP; Helmy A; Jones CR; Newby DE; Webb DJ
    Clin Pharmacol Ther; 2003 Jul; 74(1):9-16. PubMed ID: 12844130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coronary vasoconstriction produced by vasopressin in anesthetized goats. Role of vasopressin V1 and V2 receptors and nitric oxide.
    Fernández N; García JL; García-Villalón AL; Monge L; Gómez B; Diéguez G
    Eur J Pharmacol; 1998 Jan; 342(2-3):225-33. PubMed ID: 9548390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitric oxide dependent vasodilation in young spontaneously hypertensive rats.
    Radaelli A; Mircoli L; Mori I; Mancia G; Ferrari AU
    Hypertension; 1998 Oct; 32(4):735-9. PubMed ID: 9774372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transient cerebral vasodilatory effect of neuropeptide Y mediated by nitric oxide.
    Kobari M; Fukuuchi Y; Tomita M; Tanahashi N; Yamawaki T; Takeda H; Matsuoka S
    Brain Res Bull; 1993; 31(5):443-8. PubMed ID: 8495370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the receptor mediating relaxation to substance P in canine middle cerebral artery: no evidence for involvement of substance P in neurogenically mediated relaxation.
    Stubbs CM; Waldron GJ; Connor HE; Feniuk W
    Br J Pharmacol; 1992 Apr; 105(4):875-80. PubMed ID: 1380374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of nitric oxide synthase inhibition on histamine induced headache and arterial dilatation in migraineurs.
    Lassen LH; Christiansen I; Iversen HK; Jansen-Olesen I; Olesen J
    Cephalalgia; 2003 Nov; 23(9):877-86. PubMed ID: 14616929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circle of Willis in newborns: color Doppler imaging of 53 healthy full-term infants.
    Mitchell DG; Merton DA; Mirsky PJ; Needleman L
    Radiology; 1989 Jul; 172(1):201-5. PubMed ID: 2662251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isoflurane produces endothelium-independent relaxation in canine middle cerebral arteries.
    Flynn NM; Buljubasic N; Bosnjak ZJ; Kampine JP
    Anesthesiology; 1992 Mar; 76(3):461-7. PubMed ID: 1539859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitric oxide, but not vasopressin V2 receptor-mediated vasodilation, modulates vasopressin-induced renal vasoconstriction in rats.
    Loichot C; Cazaubon C; De Jong W; Helwig JJ; Nisato D; Imbs JL; Barthelmebs M
    Naunyn Schmiedebergs Arch Pharmacol; 2000 Mar; 361(3):319-26. PubMed ID: 10731046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.