BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7836674)

  • 1. Loss of relaxations, metabolic failure and increased calcium permeability of smooth muscle during chronic cerebral vasospasm.
    Kim P
    J Auton Nerv Syst; 1994 Sep; 49 Suppl():S157-62. PubMed ID: 7836674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced production of cGMP underlies the loss of endothelium-dependent relaxations in the canine basilar artery after subarachnoid hemorrhage.
    Kim P; Schini VB; Sundt TM; Vanhoutte PM
    Circ Res; 1992 Feb; 70(2):248-56. PubMed ID: 1310445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Two types of relaxation responses mediated by cyclic GMP in cerebral arteries].
    Kanamaru K; Waga S; Kojima T; Fujimoto K
    No To Shinkei; 1989 Jun; 41(6):559-65. PubMed ID: 2553081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impairment in biochemical level of arterial dilative capability of a cyclic nucleotides-dependent pathway by induced vasospasm in the canine basilar artery.
    Todo H; Ohta S; Wang J; Ichikawa H; Ohue S; Kumon Y; Sakaki S
    J Cereb Blood Flow Metab; 1998 Jul; 18(7):808-17. PubMed ID: 9663510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and charybdotoxin (CTX) on relaxations of isolated cerebral arteries to nitric oxide.
    Onoue H; Katusic ZS
    Brain Res; 1998 Feb; 785(1):107-13. PubMed ID: 9526059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal profile and significance of metabolic failure and trophic changes in the canine cerebral arteries during chronic vasospasm after subarachnoid hemorrhage.
    Yoshimoto Y; Kim P; Sasaki T; Takakura K
    J Neurosurg; 1993 May; 78(5):807-12. PubMed ID: 8468611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelium-dependent and -independent effects of exogenous ATP, adenosine, GTP and guanosine on vascular tone and cyclic nucleotide accumulation of rat mesenteric artery.
    Vuorinen P; Pörsti I; Metsä-Ketelä T; Manninen V; Vapaatalo H; Laustiola KE
    Br J Pharmacol; 1992 Feb; 105(2):279-84. PubMed ID: 1313722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-dependent relaxations and chronic vasospasm after subarachnoid hemorrhage.
    Kim P; Vanhoutte PM
    Blood Vessels; 1990; 27(2-5):263-8. PubMed ID: 2242447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-energy phosphate levels in the cerebral artery during chronic vasospasm after subarachnoid hemorrhage.
    Kim P; Jones JD; Sundt TM
    J Neurosurg; 1992 Jun; 76(6):991-6. PubMed ID: 1588435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similar responsiveness of smooth muscle of the canine basilar artery to EDRF and nitric oxide.
    Katusic ZS; Marshall JJ; Kontos HA; Vanhoutte PM
    Am J Physiol; 1989 Oct; 257(4 Pt 2):H1235-9. PubMed ID: 2552840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interrelation between protein kinase C and nitric oxide in the development of vasospasm after subarachnoid hemorrhage.
    Nishizawa S; Yamamoto S; Uemura K
    Neurol Res; 1996 Feb; 18(1):89-95. PubMed ID: 8714544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired calcium regulation of smooth muscle during chronic vasospasm following subarachnoid hemorrhage.
    Kim P; Yoshimoto Y; Iino M; Tomio S; Kirino T; Nonomura Y
    J Cereb Blood Flow Metab; 1996 Mar; 16(2):334-41. PubMed ID: 8594067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional changes in cultured strips of canine cerebral arteries after prolonged exposure to oxyhemoglobin.
    Yoshimoto Y; Kim P; Sasaki T; Kirino T; Takakura K
    J Neurosurg; 1995 Nov; 83(5):867-74. PubMed ID: 7472556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxation of subarachnoid hemorrhage-induced spasm of rabbit basilar artery by the K+ channel activator cromakalim.
    Zuccarello M; Bonasso CL; Lewis AI; Sperelakis N; Rapoport RM
    Stroke; 1996 Feb; 27(2):311-6. PubMed ID: 8571429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of SIN-1 on isolated canine basilar arteries.
    Katusic ZS; Vanhoutte PM
    J Cardiovasc Pharmacol; 1989; 14 Suppl 11():S72-5. PubMed ID: 2484704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial dysfunction and vascular disease - a 30th anniversary update.
    Vanhoutte PM; Shimokawa H; Feletou M; Tang EH
    Acta Physiol (Oxf); 2017 Jan; 219(1):22-96. PubMed ID: 26706498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Obligatory roles of protein kinase C and nitric oxide in the regulation of cerebral vascular tone: an implication of a pathogenesis of vasospasm after subarachnoid haemorrhage.
    Nishizawa S; Yokota N; Yokoyama T; Uemura K
    Acta Neurochir (Wien); 1998; 140(10):1063-8. PubMed ID: 9856250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxation effect of abacavir on rat basilar arteries.
    Li RW; Yang C; Chan SW; Hoi MP; Lee SM; Kwan YW; Leung GP
    PLoS One; 2015; 10(4):e0123043. PubMed ID: 25853881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of soluble guanylate cyclase and potassium channels contribute to relaxations to nitric oxide in smooth muscle derived from canine femoral veins.
    Bracamonte MP; Burnett JC; Miller VM
    J Cardiovasc Pharmacol; 1999 Sep; 34(3):407-13. PubMed ID: 10471000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelium-derived nitric oxide inhibits the relaxation of the porcine coronary artery to natriuretic peptides by desensitizing big conductance calcium-activated potassium channels of vascular smooth muscle.
    Liang CF; Au AL; Leung SW; Ng KF; Félétou M; Kwan YW; Man RY; Vanhoutte PM
    J Pharmacol Exp Ther; 2010 Jul; 334(1):223-31. PubMed ID: 20332186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.