These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 7837267)

  • 1. Inhibition of transcription initiation by lac repressor.
    Schlax PJ; Capp MW; Record MT
    J Mol Biol; 1995 Jan; 245(4):331-50. PubMed ID: 7837267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo.
    Sasse-Dwight S; Gralla JD
    J Biol Chem; 1989 May; 264(14):8074-81. PubMed ID: 2722774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of RNA polymerase and lac repressor with the lac control region.
    Schmitz A; Galas DJ
    Nucleic Acids Res; 1979 Jan; 6(1):111-37. PubMed ID: 370784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. lacP1 promoter with an extended -10 motif. Pleiotropic effects of cyclic AMP protein at different steps of transcription initiation.
    Liu M; Garges S; Adhya S
    J Biol Chem; 2004 Dec; 279(52):54552-7. PubMed ID: 15385551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site.
    Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT
    J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of transcription from tandem and convergent promoters.
    Horowitz H; Platt T
    Nucleic Acids Res; 1982 Sep; 10(18):5447-65. PubMed ID: 6755394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of ion concentration effects of the kinetics of protein-nucleic acid interactions. Application to lac repressor-operator interactions.
    Lohman TM; DeHaseth PL; Record MT
    Biophys Chem; 1978 Sep; 8(4):281-94. PubMed ID: 728535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How Lac repressor finds lac operator in vitro.
    Fickert R; Müller-Hill B
    J Mol Biol; 1992 Jul; 226(1):59-68. PubMed ID: 1535665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological unwinding of strong and weak promoters by RNA polymerase. A comparison between the lac wild-type and the UV5 sites of Escherichia coli.
    Amouyal M; Buc H
    J Mol Biol; 1987 Jun; 195(4):795-808. PubMed ID: 3309341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of T7 RNA polymerase: transcription initiation and transition from initiation to elongation are inhibited by T7 lysozyme via a ternary complex with RNA polymerase and promoter DNA.
    Kumar A; Patel SS
    Biochemistry; 1997 Nov; 36(45):13954-62. PubMed ID: 9374875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of coliphage T3 and T7 RNA polymerases by the lac repressor-operator system.
    Giordano TJ; Deuschle U; Bujard H; McAllister WT
    Gene; 1989 Dec; 84(2):209-19. PubMed ID: 2693210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wrapping of flanking non-operator DNA in lac repressor-operator complexes: implications for DNA looping.
    Tsodikov OV; Saecker RM; Melcher SE; Levandoski MM; Frank DE; Capp MW; Record MT
    J Mol Biol; 1999 Dec; 294(3):639-55. PubMed ID: 10610786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micrococcal nuclease as a probe for bound and distorted DNA in lac transcription and repression complexes.
    Zhang L; Gralla JD
    Nucleic Acids Res; 1989 Jul; 17(13):5017-28. PubMed ID: 2668875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA footprints of the two kinetically significant intermediates in formation of an RNA polymerase-promoter open complex: evidence that interactions with start site and downstream DNA induce sequential conformational changes in polymerase and DNA.
    Craig ML; Tsodikov OV; McQuade KL; Schlax PE; Capp MW; Saecker RM; Record MT
    J Mol Biol; 1998 Nov; 283(4):741-56. PubMed ID: 9790837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the mechanism of inhibition of phage T7 RNA polymerase by lac repressor.
    Lopez PJ; Guillerez J; Sousa R; Dreyfus M
    J Mol Biol; 1998 Mar; 276(5):861-75. PubMed ID: 9566192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Productive and abortive initiation of transcription in vitro at the lac UV5 promoter.
    Gralla JD; Carpousis AJ; Stefano JE
    Biochemistry; 1980 Dec; 19(25):5864-9. PubMed ID: 6450614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stopped-flow kinetic analysis of the interaction of Escherichia coli RNA polymerase with the bacteriophage T7 A1 promoter.
    Johnson RS; Chester RE
    J Mol Biol; 1998 Oct; 283(2):353-70. PubMed ID: 9769210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repression of transcription initiation at 434 P(R) by 434 repressor: effects on transition of a closed to an open promoter complex.
    Xu J; Koudelka GB
    J Mol Biol; 2001 Jun; 309(3):573-87. PubMed ID: 11397081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of CRP-cAMP activation of lac operon transcription initiation activation of the P1 promoter.
    Malan TP; Kolb A; Buc H; McClure WR
    J Mol Biol; 1984 Dec; 180(4):881-909. PubMed ID: 6098691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo thermodynamic analysis of repression with and without looping in lac constructs. Estimates of free and local lac repressor concentrations and of physical properties of a region of supercoiled plasmid DNA in vivo.
    Law SM; Bellomy GR; Schlax PJ; Record MT
    J Mol Biol; 1993 Mar; 230(1):161-73. PubMed ID: 8450533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.