These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7837910)

  • 1. Amplification of mitochondrial DNA from archival temporal bone specimens.
    Simpson TA; Smith RJ
    Laryngoscope; 1995 Jan; 105(1):28-34. PubMed ID: 7837910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of DNA extracted from archival celloidin-embedded human temporal bone sections.
    Wackym PA; Chen CT; Kerner MM; Bell TS
    Am J Otol; 1995 Jan; 16(1):14-20. PubMed ID: 8579172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymerase chain reaction amplification of DNA from archival celloidin-embedded human temporal bone sections.
    Wackym PA; Simpson TA; Gantz BJ; Smith RJ
    Laryngoscope; 1993 Jun; 103(6):583-8. PubMed ID: 8502090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Extraction, amplification, recombination and sequencing of the mitochondrial DNA from celloidin embedded human temporal bone sections].
    Dai P; Jiang S; Yang W
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1998 Aug; 33(4):206-9. PubMed ID: 11717883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of ribonucleic acid detection from archival Guinea pig temporal bone specimens.
    Hall KL; Pitts DR; Anne S; Semaan MT; Alagramam KN; Megerian CA
    Otol Neurotol; 2007 Jan; 28(1):116-23. PubMed ID: 16983313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplification of RNA from archival human temporal bone sections.
    Ohtani F; Furuta Y; Iino Y; Inuyama Y; Fukuda S
    Laryngoscope; 1999 Apr; 109(4):617-20. PubMed ID: 10201751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical report: laser microdissection of cochlear structures from celloidin embedded human temporal bone tissues and detection of the mitochondrial DNA common deletion using real time PCR.
    Markaryan A; Nelson EG; Tretiakova M; Hinojosa R
    Hear Res; 2008 Oct; 244(1-2):1-6. PubMed ID: 18706496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial DNA deletions associated with aging and possibly presbycusis: a human archival temporal bone study.
    Bai U; Seidman MD; Hinojosa R; Quirk WS
    Am J Otol; 1997 Jul; 18(4):449-53. PubMed ID: 9233484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular temporal bone pathology: IV. Analysis of DNA template length using mitochondrial PCR primers.
    Wackym PA; Kerner MM; Grody WW
    Laryngoscope; 1998 Aug; 108(8 Pt 2 Suppl 88):4-7. PubMed ID: 9707260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and sequencing of genomic DNA extracted from archival human temporal bone sections.
    Kerner MM; Wackym PA; Popper P; Tabor DE; Grody WW
    Laryngoscope; 1994 Feb; 104(2):127-34. PubMed ID: 8302113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid method for PCR amplification of DNA directly from cells fixed in Carnoy's fixative.
    Li S; Tuck-Muller CM; Yan Q; Wertelecki W; Chen H
    Am J Med Genet; 1995 Jan; 55(1):116-9. PubMed ID: 7702083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of three DNA extraction methods on bone and blood stains up to 43 years old and amplification of three different gene sequences.
    Cattaneo C; Craig OE; James NT; Sokol RJ
    J Forensic Sci; 1997 Nov; 42(6):1126-35. PubMed ID: 9397557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical report: immunofluorescence and TUNEL staining of celloidin embedded human temporal bone tissues.
    Markaryan A; Nelson EG; Tretiakova M; Hinojosa R
    Hear Res; 2008 Jul; 241(1-2):1-6. PubMed ID: 18547759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RT-PCR detection of mRNA recovered from archival glass slide smears.
    Akoury DA; Seo JJ; James CD; Zaki SR
    Mod Pathol; 1993 Mar; 6(2):195-200. PubMed ID: 8483891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymerase chain reaction amplification of a measles virus sequence from human temporal bone sections with active otosclerosis.
    McKenna MJ; Kristiansen AG; Haines J
    Am J Otol; 1996 Nov; 17(6):827-30. PubMed ID: 8915408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA extraction from paraffin-embedded tissues using a salting-out procedure: a reliable method for PCR amplification of archival material.
    Howe JR; Klimstra DS; Cordon-Cardo C
    Histol Histopathol; 1997 Jul; 12(3):595-601. PubMed ID: 9225139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of mitochondrial DNA from human inner ear using real-time polymerase chain reaction and laser microdissection.
    Kimura Y; Kouda H; Eishi Y; Kobayashi D; Suzuki Y; Ishige I; Iino Y; Kitamura K
    Acta Otolaryngol; 2005 Jul; 125(7):697-701. PubMed ID: 16012029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification.
    Akane A; Matsubara K; Nakamura H; Takahashi S; Kimura K
    J Forensic Sci; 1994 Mar; 39(2):362-72. PubMed ID: 8195750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of the quality of DNA obtained from fresh frozen and formalin-fixed decalcified paraffin-embedded bone marrow trephine biopsy specimens using two different methods.
    Talaulikar D; Gray JX; Shadbolt B; McNiven M; Dahlstrom JE
    J Clin Pathol; 2008 Jan; 61(1):119-23. PubMed ID: 17545562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproducible quantitative PCR of mitochondrial and nuclear DNA copy number using the LightCycler.
    Wong A; Cortopassi G
    Methods Mol Biol; 2002; 197():129-37. PubMed ID: 12013791
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.