These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7837953)

  • 41. Role of O2 in regulating tissue respiration in dog muscle working in situ.
    Hogan MC; Arthur PG; Bebout DE; Hochachka PW; Wagner PD
    J Appl Physiol (1985); 1992 Aug; 73(2):728-36. PubMed ID: 1400003
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Effect of stretching of the cat gastrocnemius muscle on its tetany, postcontraction hyperemia and energy metabolism indices].
    Matchanov AT; Shustova NIa; Shuvaeva VN; Vasil'eva LI; Levtov VA
    Fiziol Zh SSSR Im I M Sechenova; 1983 Feb; 69(2):210-9. PubMed ID: 6840344
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A model analysis of asymmetrical response of pulmonary VO2 during incremental and decremental ramp exercise.
    Niizeki K; Takahashi T; Miyamoto Y
    J Appl Physiol (1985); 1995 Nov; 79(5):1816-27. PubMed ID: 8594045
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxygen consumption in resting dog gracilis muscle perfused at varying oxygen delivery.
    Kohzuki H; Enoki Y; Ohga Y; Shimizu S; Sakata S
    Jpn J Physiol; 1991; 41(1):23-34. PubMed ID: 1857020
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Blood flow in exercising muscles by xenon clearance and by microsphere trapping.
    Cerretelli P; Marconi C; Pendergast D; Meyer M; Heisler N; Piiper J
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Jan; 56(1):24-30. PubMed ID: 6693326
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flow-dependent influence of high-O2-affinity erythrocytes on peak VO2 in exercising muscle in situ.
    Kohzuki H; Enoki Y; Matsumura K; Sakata S; Shimizu S
    J Appl Physiol (1985); 1996 Mar; 80(3):832-8. PubMed ID: 8964744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. alpha-Stimulation protects exercise increment in skeletal muscle oxygen consumption.
    Nellis SH; Flaim SF; McCauley KM; Zelis R
    Am J Physiol; 1980 Mar; 238(3):H331-9. PubMed ID: 7369377
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional threshold power is not a valid marker of the maximal metabolic steady state.
    Wong S; Burnley M; Mauger A; Fenghua S; Hopker J
    J Sports Sci; 2022 Dec; 40(23):2578-2584. PubMed ID: 36803419
    [TBL] [Abstract][Full Text] [Related]  

  • 49. VO2 kinetics and metabolic contributions whilst swimming at 95, 100, and 105% of the velocity at VO2max.
    Sousa AC; Vilas-Boas JP; Fernandes RJ
    Biomed Res Int; 2014; 2014():675363. PubMed ID: 25045690
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extracellular K+ concentration and K+ balance of the gastrocnemius muscle of the dog during exercise.
    Hirche H; Schumacher E; Hagemann H
    Pflugers Arch; 1980 Sep; 387(3):231-7. PubMed ID: 7191989
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The interstitial fluid content in working muscle modifies the cardiovascular response to exercise.
    Schütze H; Hildebrandt W; Stegemann J
    Eur J Appl Physiol Occup Physiol; 1991; 62(5):332-6. PubMed ID: 1874238
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ventilatory responses during electrically induced muscular work in anesthetized dogs, after both deafferentation and cross circulation of hindlimbs.
    Da-Silva AC; Russo AK; Leite-de-Barros-Neto T; Tarasantchi J; Piçarro IC; Griggio MA
    Braz J Med Biol Res; 1982 Jul; 15(2-3):153-9. PubMed ID: 7150822
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Possible mechanisms of oxygen uptake kinetics.
    Walsh ML
    Ann Physiol Anthropol; 1992 May; 11(3):215-23. PubMed ID: 1642717
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Norepinephrine increases canine skeletal muscle VO2 during recovery.
    Gladden LB; Stainsby WN; MacIntosh BR
    Med Sci Sports Exerc; 1982; 14(6):471-6. PubMed ID: 7162394
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental support for the theory of diffusion limitation of maximum oxygen uptake.
    Wagner PD; Roca J; Hogan MC; Poole DC; Bebout DC; Haab P
    Adv Exp Med Biol; 1990; 277():825-33. PubMed ID: 2096683
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Blood flow distribution and its temporal variability in stimulated dog gastrocnemius muscle.
    Marconi C; Heisler N; Meyer M; Weitz H; Pendergast DR; Cerretelli P; Piiper J
    Respir Physiol; 1988 Oct; 74(1):1-13. PubMed ID: 3187202
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [O2-consumption and mechanical performance of the dog gastrocnemius during variations in blood flow].
    Piiper J; Di Prampero PE; Cerretelli P
    Pflugers Arch; 1969; 307(2):R92. PubMed ID: 5814915
    [No Abstract]   [Full Text] [Related]  

  • 58. Unequal distribution of blood flow in exercising muscle of the dog.
    Piiper J
    Respir Physiol; 1990; 80(2-3):129-36. PubMed ID: 2171122
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CrossTalk opposing view: Diffusion limitation of O2 from microvessels into muscle does not contribute to the limitation of V̇O2 max.
    Lundby C; Montero D
    J Physiol; 2015 Sep; 593(17):3759-61. PubMed ID: 26331827
    [No Abstract]   [Full Text] [Related]  

  • 60. CrossTalk proposal: Diffusion limitation of O2 from microvessels into muscle does contribute to the limitation of V̇O2 max.
    Wagner PD
    J Physiol; 2015 Sep; 593(17):3757-8. PubMed ID: 26331826
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.