These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7838058)

  • 1. A model for optimization of spectral shape in digital mammography.
    Fahrig R; Yaffe MJ
    Med Phys; 1994 Sep; 21(9):1463-71. PubMed ID: 7838058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of spectral shape in digital mammography: dependence on anode material, breast thickness, and lesion type.
    Fahrig R; Yaffe MJ
    Med Phys; 1994 Sep; 21(9):1473-81. PubMed ID: 7838059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: spectral optimization and preliminary phantom measurement.
    Saito M
    Med Phys; 2007 Nov; 34(11):4236-46. PubMed ID: 18072488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phantom study to evaluate contrast-medium-enhanced digital subtraction mammography with a full-field indirect-detection system.
    Palma BA; Rosado-Méndez I; Villaseñor Y; Brandan ME
    Med Phys; 2010 Feb; 37(2):577-89. PubMed ID: 20229866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the impact of X-ray spectral shape on image quality in flat-panel CT breast imaging.
    Glick SJ; Thacker S; Gong X; Liu B
    Med Phys; 2007 Jan; 34(1):5-24. PubMed ID: 17278485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical optimization of digital subtraction mammography with contrast medium using a commercial unit.
    Rosado-Méndez I; Palma BA; Brandan ME
    Med Phys; 2008 Dec; 35(12):5544-57. PubMed ID: 19175112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of contrast digital mammography.
    Skarpathiotakis M; Yaffe MJ; Bloomquist AK; Rico D; Muller S; Rick A; Jeunehomme F
    Med Phys; 2002 Oct; 29(10):2419-26. PubMed ID: 12408316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algorithmic scatter correction in dual-energy digital mammography.
    Chen X; Nishikawa RM; Chan ST; Lau BA; Zhang L; Mou X
    Med Phys; 2013 Nov; 40(11):111919. PubMed ID: 24320452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo performance on the x-ray converter thickness in digital mammography using software breast models.
    Liaparinos P; Bliznakova K
    Med Phys; 2012 Nov; 39(11):6638-51. PubMed ID: 23127058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic range requirements in digital mammography.
    Maidment AD; Fahrig R; Yaffe MJ
    Med Phys; 1993; 20(6):1621-33. PubMed ID: 8309434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cascaded systems analysis of anatomic noise in digital mammography and dual-energy digital mammography.
    Tanguay J; Lalonde R; Bjarnason TA; Yang CJ
    Phys Med Biol; 2019 Oct; 64(21):215002. PubMed ID: 31470440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation study of a quasi-monochromatic beam for x-ray computed mammotomography.
    McKinley RL; Tornai MP; Samei E; Bradshaw ML
    Med Phys; 2004 Apr; 31(4):800-13. PubMed ID: 15124997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suitability of new anode materials in mammography: dose and subject contrast considerations using Monte Carlo simulation.
    Delis H; Spyrou G; Costaridou L; Tzanakos G; Panayiotakis G
    Med Phys; 2006 Nov; 33(11):4221-35. PubMed ID: 17153401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of full-field digital mammography to screen-film mammography with respect to contrast and spatial resolution in tissue equivalent breast phantoms.
    Kuzmiak CM; Pisano ED; Cole EB; Zeng D; Burns CB; Roberto C; Pavic D; Lee Y; Seo BK; Koomen M; Washburn D
    Med Phys; 2005 Oct; 32(10):3144-50. PubMed ID: 16279068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-energy digital mammography for calcification imaging: scatter and nonuniformity corrections.
    Kappadath SC; Shaw CC
    Med Phys; 2005 Nov; 32(11):3395-408. PubMed ID: 16372415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulation of breast imaging using synchrotron radiation.
    Fitousi NT; Delis H; Panayiotakis G
    Med Phys; 2012 Apr; 39(4):2069-77. PubMed ID: 22482628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of mammography radiation dose values obtained from direct incident air kerma measurements with values from measured X-ray spectral data.
    Assiamah M; Nam TL; Keddy RJ
    Appl Radiat Isot; 2005 Apr; 62(4):551-60. PubMed ID: 15701409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-energy digital mammography: calibration and inverse-mapping techniques to estimate calcification thickness and glandular-tissue ratio.
    Kappadath SC; Shaw CC
    Med Phys; 2003 Jun; 30(6):1110-7. PubMed ID: 12852535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation of the dose and image quality characteristics of a digital mammography imaging system.
    Huda W; Sajewicz AM; Ogden KM; Dance DR
    Med Phys; 2003 Mar; 30(3):442-8. PubMed ID: 12674245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.