These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 7838674)

  • 1. Contribution of prostaglandins in hypoxia-induced vasodilation in isolated rabbit hearts. Relation to adenosine and KATP channels.
    Nakhostine N; Lamontagne D
    Pflugers Arch; 1994 Oct; 428(5-6):526-32. PubMed ID: 7838674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine contributes to hypoxia-induced vasodilation through ATP-sensitive K+ channel activation.
    Nakhostine N; Lamontagne D
    Am J Physiol; 1993 Oct; 265(4 Pt 2):H1289-93. PubMed ID: 8238416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that prostaglandins I2, E2, and D2 may activate ATP sensitive potassium channels in the isolated rat heart.
    Bouchard JF; Dumont E; Lamontagne D
    Cardiovasc Res; 1994 Jun; 28(6):901-5. PubMed ID: 7522966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prostacyclin-induced vasodilation in rabbit heart is mediated by ATP-sensitive potassium channels.
    Jackson WF; König A; Dambacher T; Busse R
    Am J Physiol; 1993 Jan; 264(1 Pt 2):H238-43. PubMed ID: 7679257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP gated potassium channels in acute myocardial hibernation and reperfusion.
    Offstad J; Kirkebøen KA; Ilebekk A; Downing SE
    Cardiovasc Res; 1994 Jun; 28(6):872-80. PubMed ID: 7923294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prostacyclin and nitric oxide contribute to the vasodilator action of acetylcholine and bradykinin in the intact rabbit coronary bed.
    Lamontagne D; König A; Bassenge E; Busse R
    J Cardiovasc Pharmacol; 1992 Oct; 20(4):652-7. PubMed ID: 1280723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia-induced release of prostaglandins: mechanisms and sources of production in coronary resistance vessels of the isolated rabbit heart.
    Nakhostine N; Laurent CE; Nadeau R; Cardinal R; Lamontagne D
    Can J Physiol Pharmacol; 1995 Dec; 73(12):1742-9. PubMed ID: 8834488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of nitric oxide, cyclic nucleotides, and the activation of ATP-sensitive K+ channels in the contribution of adenosine to hypoxia-induced pial artery dilation.
    Armstead WM
    J Cereb Blood Flow Metab; 1997 Jan; 17(1):100-8. PubMed ID: 8978392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxic vasodilatation in isolated, perfused guinea-pig heart: an analysis of the underlying mechanisms.
    von Beckerath N; Cyrys S; Dischner A; Daut J
    J Physiol; 1991 Oct; 442():297-319. PubMed ID: 1798031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of hypoxia-induced relaxation of rabbit isolated coronary arteries by NG-monomethyl-L-arginine but not glibenclamide.
    Jiang C; Collins P
    Br J Pharmacol; 1994 Mar; 111(3):711-6. PubMed ID: 8019749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The involvement of ATP-sensitive potassium channels and adenosine in the regulation of coronary flow in the isolated perfused rat heart.
    Randall MD
    Br J Pharmacol; 1995 Dec; 116(7):3068-74. PubMed ID: 8680745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of protection afforded by preconditioning to endothelial function against ischemic injury.
    Bouchard JF; Lamontagne D
    Am J Physiol; 1996 Nov; 271(5 Pt 2):H1801-6. PubMed ID: 8945894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of K(+)(ATP) channels and adenosine in regulation of coronary blood flow in the hypertrophied left ventricle.
    Melchert PJ; Duncker DJ; Traverse JH; Bache RJ
    Am J Physiol; 1999 Aug; 277(2 Pt 2):H617-25. PubMed ID: 10444487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blockade of adenosine triphosphate-sensitive potassium channels eliminates isoflurane-induced coronary artery vasodilation.
    Cason BA; Shubayev I; Hickey RF
    Anesthesiology; 1994 Nov; 81(5):1245-55; discussion 27A-28A. PubMed ID: 7978484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered hypoxia-induced coronary vasodilatation in diabetic rabbit heart.
    Nakhostine N; Nadeau R; Lamontagne D
    Can J Physiol Pharmacol; 1997 Dec; 75(12):1267-72. PubMed ID: 9534935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise.
    Ishibashi Y; Duncker DJ; Zhang J; Bache RJ
    Circ Res; 1998 Feb; 82(3):346-59. PubMed ID: 9486663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EDRF does not mediate coronary vasodilation secondary to simulated ischemia: a study on KATP channels and N omega-nitro-L-arginine on coronary perfusion pressure in isolated Langendorff-perfused guinea-pig hearts.
    Gasser R; Köppel H; Brussee H; Grisold M; Holzmann S; Klein W
    Cardiovasc Drugs Ther; 1998 Jul; 12(3):279-84. PubMed ID: 9784907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prostacyclin-dependent coronary vasodilation in rabbit and guinea pig hearts.
    Wennmalm A
    Acta Physiol Scand; 1979 May; 106(1):47-52. PubMed ID: 380266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A link between adenosine, ATP-sensitive K+ channels, potassium and muscle vasodilatation in the rat in systemic hypoxia.
    Marshall JM; Thomas T; Turner L
    J Physiol; 1993 Dec; 472():1-9. PubMed ID: 8145135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coronary vasodilation: interactions between prostacyclin and adenosine.
    Blass KE; Förster W; Zehl U
    Br J Pharmacol; 1980 Aug; 69(4):555-9. PubMed ID: 7002243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.