BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7838857)

  • 1. Illumination partly reverses the postsynaptic blockade of the frog neuromuscular junction by the styryl pyridinium dye RH414.
    Bewick GS; Betz WJ
    Proc Biol Sci; 1994 Nov; 258(1352):201-7. PubMed ID: 7838857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postsynaptic block of frog neuromuscular transmission by conotoxin GI.
    McManus OB; Musick JR
    J Neurosci; 1985 Jan; 5(1):110-6. PubMed ID: 2981295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a vertebrate neuromuscular junction that demonstrates selective resistance to botulinum toxin.
    Coffield JA; Bakry NM; Maksymowych AB; Simpson LL
    J Pharmacol Exp Ther; 1999 Jun; 289(3):1509-16. PubMed ID: 10336546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ammodytin L on miniature and endplate potentials in neuromuscular junction of frog m. cutaneus pectoris.
    Frangez R; Krizaj I; Gubensek F; Suput D
    Pflugers Arch; 2000; 440(5 Suppl):R101-2. PubMed ID: 11005629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre- and postjunctional neuromuscular blockade by carbachol.
    Volle RL; Henderson EG
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 291(4):359-70. PubMed ID: 1082104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors.
    Grandič M; Aráoz R; Molgó J; Turk T; Sepčić K; Benoit E; Frangež R
    Toxicol Appl Pharmacol; 2012 Dec; 265(2):221-8. PubMed ID: 23046821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of blockade of neuromuscular transmission by pentobarbital.
    Seyama I; Narahashi T
    J Pharmacol Exp Ther; 1975 Jan; 192(1):95-104. PubMed ID: 164531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actions of a new muscle relaxant (AH8165) on neuromuscular transmission.
    Post EL; Sokoll MD; Gergis SD; Dretchen KL; Cronnelly R; Long JP
    Anesthesiology; 1975 Mar; 42(3):240-4. PubMed ID: 165756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hypertonic saline on quantal size and synaptic vesicles in identified neuromuscular junction of the frog.
    Kriebel ME; Pappas GD
    Neuroscience; 1987 Nov; 23(2):745-56. PubMed ID: 3501849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one on synaptic vesicle cycling at the frog neuromuscular junction.
    Rizzoli SO; Betz WJ
    J Neurosci; 2002 Dec; 22(24):10680-9. PubMed ID: 12486161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postsynaptic structure may account for variations in miniature endplate current shapes along frog neuromuscular junctions.
    Fortier LP; Tremblay JP
    Synapse; 1990; 5(4):255-64. PubMed ID: 2360195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a homoanatoxin-a-containing extract from Oscillatoria formosa (Cyanophyceae/cyanobacteria) on neuromuscular transmission.
    Lilleheil G; Andersen RA; Skulberg OM; Alexander J
    Toxicon; 1997 Aug; 35(8):1275-89. PubMed ID: 9278976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Etomidate evokes synaptic vesicle exocytosis without increasing miniature endplate potentials frequency at the mice neuromuscular junction.
    Valadão PA; Naves LA; Gomez RS; Guatimosim C
    Neurochem Int; 2013 Nov; 63(6):576-82. PubMed ID: 24044896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of FM1-43 staining patterns and electrophysiological measures of transmitter release at the frog neuromuscular junction.
    Betz WJ; Ridge RM; Bewick GS
    J Physiol Paris; 1993; 87(3):193-202. PubMed ID: 7511018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane cholesterol regulates different modes of synaptic vesicle release and retrieval at the frog neuromuscular junction.
    Rodrigues HA; Lima RF; Fonseca Mde C; Amaral EA; Martinelli PM; Naves LA; Gomez MV; Kushmerick C; Prado MA; Guatimosim C
    Eur J Neurosci; 2013 Oct; 38(7):2978-87. PubMed ID: 23841903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypertonic treatment reversibly increases the ratio of giant skew-miniature endplate potentials to bell-miniature endplate potentials.
    Kriebel ME; Llados F; Vautrin J
    Neuroscience; 1996 Mar; 71(1):101-17. PubMed ID: 8834395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meproadifen reaction with the ionic channel of the acetylcholine receptor: potentiation of agonist-induced desensitization at the frog neuromuscular junction.
    Maleque MA; Souccar C; Cohen JB; Albuquerque EX
    Mol Pharmacol; 1982 Nov; 22(3):636-47. PubMed ID: 6296656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The actions of verapamil at the neuromuscular junction.
    Ribera AB; Nastuk WL
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 93(1):137-41. PubMed ID: 2567223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Succinyl derivatives of N-tris (hydroxymethyl) methyl-2-aminoethane sulphonic acid: their effects on the frog neuromuscular junction.
    del Castillo J; Escalona de Motta G; Eterović VA; Ferchmin PA
    Br J Pharmacol; 1985 Feb; 84(2):275-88. PubMed ID: 3872147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triphenylmethylphosphonium blocks the nicotinic acetylcholine receptor noncompetitively.
    Spivak CE; Albuquerque EX
    Mol Pharmacol; 1985 Feb; 27(2):246-55. PubMed ID: 2578604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.