These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 7838974)
1. Study of Bacillus sp. culture conditions to promote production of unhairing proteases. Loperena L; Ferrari MD; Belobrajdic L; Weyrauch R; Varela H Rev Argent Microbiol; 1994; 26(3):105-15. PubMed ID: 7838974 [TBL] [Abstract][Full Text] [Related]
2. Modelling and optimization of fermentation factors for enhancement of alkaline protease production by isolated Bacillus circulans using feed-forward neural network and genetic algorithm. Rao ChS; Sathish T; Mahalaxmi M; Laxmi GS; Rao RS; Prakasham RS J Appl Microbiol; 2008 Mar; 104(3):889-98. PubMed ID: 17953681 [TBL] [Abstract][Full Text] [Related]
3. Bioprocess parameters and oxygen transfer characteristics in beta-lactamase production by Bacillus species. Celik E; Calik P Biotechnol Prog; 2004; 20(2):491-9. PubMed ID: 15058994 [TBL] [Abstract][Full Text] [Related]
4. Production and characterization of a novel protease from Bacillus sp. RRM1 under solid state fermentation. Rajkumar R; Kothilmozhian J; Ramasamy R J Microbiol Biotechnol; 2011 Jun; 21(6):627-36. PubMed ID: 21715970 [TBL] [Abstract][Full Text] [Related]
5. Green gram husk--an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Prakasham RS; Rao ChS; Sarma PN Bioresour Technol; 2006 Sep; 97(13):1449-54. PubMed ID: 16140528 [TBL] [Abstract][Full Text] [Related]
6. Study and improvement of the conditions for production of a novel alkali stable catalase. Hua Z; Yan G; Du G; Chen J Biotechnol J; 2007 Mar; 2(3):326-33. PubMed ID: 17219459 [TBL] [Abstract][Full Text] [Related]
7. Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Shikha ; Sharan A; Darmwal NS Bioresour Technol; 2007 Mar; 98(4):881-5. PubMed ID: 16765594 [TBL] [Abstract][Full Text] [Related]
8. Optimization of culture conditions for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeometricum sp. TSS101. Vidyasagar M; Prakash SB; Sreeramulu K Lett Appl Microbiol; 2006 Oct; 43(4):385-91. PubMed ID: 16965368 [TBL] [Abstract][Full Text] [Related]
9. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Reddy LV; Wee YJ; Yun JS; Ryu HW Bioresour Technol; 2008 May; 99(7):2242-9. PubMed ID: 17596938 [TBL] [Abstract][Full Text] [Related]
10. Influence of growth conditions on the production of extracellular proteolytic enzymes in Paenibacillus peoriae NRRL BD-62 and Paenibacillus polymyxa SCE2. Alvarez VM; von der Weid I; Seldin L; Santos AL Lett Appl Microbiol; 2006 Dec; 43(6):625-30. PubMed ID: 17083708 [TBL] [Abstract][Full Text] [Related]
11. An organic solvent-, detergent-, and thermo-stable alkaline protease from the mesophilic, organic solvent-tolerant Bacillus licheniformis 3C5. Rachadech W; Navacharoen A; Ruangsit W; Pongtharangkul T; Vangnai AS Mikrobiologiia; 2010; 79(5):630-8. PubMed ID: 21090506 [TBL] [Abstract][Full Text] [Related]
12. Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Chi Z; Ma C; Wang P; Li HF Bioresour Technol; 2007 Feb; 98(3):534-8. PubMed ID: 16545561 [TBL] [Abstract][Full Text] [Related]
13. Optimization of extracellular alkaline protease production from species of Bacillus. Chu WH J Ind Microbiol Biotechnol; 2007 Mar; 34(3):241-5. PubMed ID: 17171551 [TBL] [Abstract][Full Text] [Related]
14. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off. Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2007; 72(4):951-6. PubMed ID: 18396833 [TBL] [Abstract][Full Text] [Related]
15. Environmental effects on transglutaminase production and cell sporulation in submerged cultivation of Bacillus circulans. de Souza CF; de Matos GS; Flôres SH; Ayub MA Appl Biochem Biotechnol; 2009 Aug; 158(2):302-12. PubMed ID: 18716920 [TBL] [Abstract][Full Text] [Related]
16. Growth and exopolysaccharide production during free and immobilized cell chemostat culture of Lactobacillus rhamnosus RW-9595M. Bergmaier D; Champagne CP; Lacroix C J Appl Microbiol; 2005; 98(2):272-84. PubMed ID: 15659181 [TBL] [Abstract][Full Text] [Related]
17. Effect of bioprocess conditions on growth and alkaline protease production by halotolerant Bacillus licheniformis BA17. Nikerel IE; Ateş O; Oner ET Prikl Biokhim Mikrobiol; 2008; 44(5):539-44. PubMed ID: 18822773 [TBL] [Abstract][Full Text] [Related]
18. [Free proteolytic activity from Serratia marcescens. II. Kinetics of production and mechanism of induction]. Hernández-Delgadillo R; Ruiz-Cruz JJ Rev Latinoam Microbiol; 1994; 36(2):93-100. PubMed ID: 7973185 [TBL] [Abstract][Full Text] [Related]
19. Assessment of olive-mill wastewater as a growth medium for lipase production by Candida cylindracea in bench-top reactor. Brozzoli V; Crognale S; Sampedro I; Federici F; D'Annibale A; Petruccioli M Bioresour Technol; 2009 Jul; 100(13):3395-402. PubMed ID: 19303284 [TBL] [Abstract][Full Text] [Related]
20. A parametric study ot protease production in batch and fed-batch cultures of Bacillus firmus. Moon SH; Parulekar SJ Biotechnol Bioeng; 1991 Mar; 37(5):467-83. PubMed ID: 18597393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]