These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7839557)

  • 41. Superresolution of ultrasound images using the first and second harmonic signal.
    Taxt T; Jirík R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Feb; 51(2):163-75. PubMed ID: 15055806
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combinatorial and probabilistic fusion of noisy correlation measurements for untracked freehand 3-D ultrasound.
    Laporte C; Arbel T
    IEEE Trans Med Imaging; 2008; 27(7):984-94. PubMed ID: 18599403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simulation of B-scan images from two-dimensional transducer arrays: Part II--Comparisons between linear and two-dimensional phased arrays.
    Turnbull DH; Foster FS
    Ultrason Imaging; 1992 Oct; 14(4):344-53. PubMed ID: 1296338
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single pulse frequency compounding protocol for superharmonic imaging.
    Danilouchkine MG; van Neer PL; Verweij MD; Matte GM; Vletter WB; van der Steen AF; de Jong N
    Phys Med Biol; 2013 Jul; 58(14):4791-805. PubMed ID: 23787259
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Window-modulated compounding Nakagami imaging for ultrasound tissue characterization.
    Tsui PH; Ma HY; Zhou Z; Ho MC; Lee YH
    Ultrasonics; 2014 Aug; 54(6):1448-59. PubMed ID: 24835004
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Correlation analysis of three-dimensional strain imaging using ultrasound two-dimensional array transducers.
    Rao M; Varghese T
    J Acoust Soc Am; 2008 Sep; 124(3):1858-65. PubMed ID: 19045676
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temporal compounding: a novel implementation and its impact on quality and diagnostic value in echocardiography.
    Perperidis A; Cusack D; White A; McDicken N; MacGillivray T; Anderson T
    Ultrasound Med Biol; 2015 Jun; 41(6):1749-65. PubMed ID: 25817782
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A high-frequency ultrasound imaging system combining limited-angle spatial compounding and model-based synthetic aperture focusing.
    Opretzka J; Vogt M; Ermert H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1355-65. PubMed ID: 21768020
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Full angle spatial compounding for improved replenishment analyses in contrast perfusion imaging: in vitro studies.
    Hansen C; Hüttebräuker N; Wilkening W; Brunke S; Ermert H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Apr; 55(4):819-31. PubMed ID: 18467226
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrasonographic contrast-agent imaging of sub-millimeter vessel structures with spatial compounding: in vitro analyses.
    Hansen C; Hüttebräuker N; Wilkening W; Ashfaq M; Ermert H
    Biomed Tech (Berl); 2007 Aug; 52(4):274-83. PubMed ID: 17691860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A method to expedite data acquisition for multiple spatial-temporal analyses of tissue perfusion by contrast-enhanced ultrasound.
    Hansen C; Hüttebräuker N; Wilkening W; Ermert H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):507-19. PubMed ID: 19411210
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A split-aperture transmit beamforming technique with phase coherence grating lobe suppression.
    Torbatian Z; Adamson R; Bance M; Brown JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2588-95. PubMed ID: 21041146
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plane wave compounding based on a joint transmitting-receiving adaptive beamformer.
    Zhao J; Wang Y; Zeng X; Yu J; Yiu BY; Yu AC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Aug; 62(8):1440-52. PubMed ID: 26276954
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Beam steering with segmented annular arrays.
    Ullate LG; Godoy G; Martínez O; Sánchez T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1944-54. PubMed ID: 17036803
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Speckle reducing anisotropic diffusion for 3D ultrasound images.
    Sun Q; Hossack JA; Tang J; Acton ST
    Comput Med Imaging Graph; 2004 Dec; 28(8):461-70. PubMed ID: 15541953
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three-dimensional synthetic aperture focusing using a rocking convex array transducer.
    Andresen H; Nikolov SI; Pedersen MM; Buckton D; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1051-63. PubMed ID: 20442016
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Performance of ultrasound based measurement of 3D displacement using a curvilinear probe for organ motion tracking.
    Harris EJ; Miller NR; Bamber JC; Evans PM; Symonds-Tayler JR
    Phys Med Biol; 2007 Sep; 52(18):5683-703. PubMed ID: 17804889
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Two-dimensional blood flow velocity estimation using ultrasound speckle pattern dependence on scan direction and A-line acquisition velocity.
    Xu T; Bashford G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):898-908. PubMed ID: 23661124
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination.
    Choi Y; Yang TD; Lee KJ; Choi W
    Opt Lett; 2011 Jul; 36(13):2465-7. PubMed ID: 21725446
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Speckle Reduction Using Adaptive Receive-Side Compounding.
    Jensen AC; Austeng A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1155-1166. PubMed ID: 33125325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.