BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

864 related articles for article (PubMed ID: 7840306)

  • 21. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts.
    Wan B; Doumen C; Duszynski J; Salama G; Vary TC; LaNoue KF
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H453-60. PubMed ID: 8368348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advantages of perfluorochemical perfusion in the isolated working rabbit heart preparation using 31P-NMR.
    Freeman D; Mayr H; Schmidt P; Roberts JD; Bing RJ
    Biochim Biophys Acta; 1987 Mar; 927(3):350-8. PubMed ID: 3814627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of the oxidative phosphorylation rate in the intact cell.
    From AH; Zimmer SD; Michurski SP; Mohanakrishnan P; Ulstad VK; Thoma WJ; Uğurbil K
    Biochemistry; 1990 Apr; 29(15):3731-43. PubMed ID: 2340268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of mitochondrial respiration in the heart in vivo.
    Balaban RS; Heineman FW
    Mol Cell Biochem; 1989 Sep; 89(2):191-7. PubMed ID: 2811864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Respiratory control in isolated perfused rat heart. Role of the equilibrium relations between the mitochondrial electron carriers and the adenylate system.
    Hassinen IE; Hiltunen K
    Biochim Biophys Acta; 1975 Dec; 408(3):319-30. PubMed ID: 172132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption.
    van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB
    Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.
    Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC
    J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 31P-NMR studies of respiratory regulation in the intact myocardium.
    From AH; Petein MA; Michurski SP; Zimmer SD; Uğurbil K
    FEBS Lett; 1986 Oct; 206(2):257-61. PubMed ID: 3530811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver.
    Kinnula VL; Hassinen I
    Acta Physiol Scand; 1978 Sep; 104(1):109-16. PubMed ID: 211796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial NAD(P)H, ADP, oxidative phosphorylation, and contraction in isolated heart cells.
    White RL; Wittenberg BA
    Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H1849-57. PubMed ID: 11009472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-L-carnitine.
    El Alaoui-Talibi Z; Guendouz A; Moravec M; Moravec J
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1615-24. PubMed ID: 9139943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relation of myocardial oxygen consumption and function to high energy phosphate utilization during graded hypoxia and reoxygenation in sheep in vivo.
    Portman MA; Standaert TA; Ning XH
    J Clin Invest; 1995 May; 95(5):2134-42. PubMed ID: 7738181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies.
    Zhou L; Cabrera ME; Okere IC; Sharma N; Stanley WC
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1036-46. PubMed ID: 16603683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative phosphorylation system during steady-state hypoxia in the dog brain.
    Nioka S; Smith DS; Chance B; Subramanian HV; Butler S; Katzenberg M
    J Appl Physiol (1985); 1990 Jun; 68(6):2527-35. PubMed ID: 2384431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiac responses to induced lactate oxidation: NMR analysis of metabolic equilibria.
    Lewandowski ED; Damico LA; White LT; Yu X
    Am J Physiol; 1995 Jul; 269(1 Pt 2):H160-8. PubMed ID: 7631845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relation between the O2 supply:demand ratio, MVO2, and adenosine formation in hearts stimulated with inotropic agents.
    Headrick JP; Willis RJ
    Can J Physiol Pharmacol; 1990 Jan; 68(1):110-8. PubMed ID: 2158384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate-induced alterations of high energy phosphate metabolism and contractile function in the perfused heart.
    Zweier JL; Jacobus WE
    J Biol Chem; 1987 Jun; 262(17):8015-21. PubMed ID: 3597359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On being the right size: heart design, mitochondrial efficiency and lifespan potential.
    Dobson GP
    Clin Exp Pharmacol Physiol; 2003 Aug; 30(8):590-7. PubMed ID: 12890185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissociation between adenosine release, MVO2, and energy status in working guinea pig hearts.
    Decking UK; Arens S; Schlieper G; Schulze K; Schrader J
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H371-81. PubMed ID: 9038958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy status and oxidation-reduction status in rat liver at high altitude (3.8 km).
    Reed RD; Pace N
    Aviat Space Environ Med; 1980 May; 51(5):448-53. PubMed ID: 7387568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.