These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7840457)

  • 1. Mathematical modeling. Concept paper.
    Ann N Y Acad Sci; 1994 Dec; 740():271-4. PubMed ID: 7840457
    [No Abstract]   [Full Text] [Related]  

  • 2. Modeling spatial spread of infectious diseases with a fixed latent period in a spatially continuous domain.
    Li J; Zou X
    Bull Math Biol; 2009 Nov; 71(8):2048-79. PubMed ID: 19787405
    [No Abstract]   [Full Text] [Related]  

  • 3. Mathematical models of infectious disease transmission.
    Grassly NC; Fraser C
    Nat Rev Microbiol; 2008 Jun; 6(6):477-87. PubMed ID: 18533288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some model based considerations on observing generation times for communicable diseases.
    Scalia Tomba G; Svensson A; Asikainen T; Giesecke J
    Math Biosci; 2010 Jan; 223(1):24-31. PubMed ID: 19854206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Mathematical models of infection transmission].
    Baussano I; Bianco S; Lazzarato F
    Epidemiol Prev; 2010; 34(1-2):56-60. PubMed ID: 20595738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the impact of global warming on vector-borne infections.
    Massad E; Coutinho FA; Lopez LF; da Silva DR
    Phys Life Rev; 2011 Jun; 8(2):169-99. PubMed ID: 21257353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of time distribution shape on a complex epidemic model.
    Camitz M; Svensson A
    Bull Math Biol; 2009 Nov; 71(8):1902-13. PubMed ID: 19475454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probability of a disease outbreak in stochastic multipatch epidemic models.
    Lahodny GE; Allen LJ
    Bull Math Biol; 2013 Jul; 75(7):1157-80. PubMed ID: 23666483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unlocking pathogen genotyping information for public health by mathematical modeling.
    Kretzschmar M; Gomes MG; Coutinho RA; Koopman JS
    Trends Microbiol; 2010 Sep; 18(9):406-12. PubMed ID: 20638846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases.
    d'Onofrio A; Manfredi P
    J Theor Biol; 2009 Feb; 256(3):473-8. PubMed ID: 18992258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidemic spreading in a hierarchical social network.
    Grabowski A; KosiƄski RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031908. PubMed ID: 15524550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Analysis of the development of an epidemic during the spread of the leading variant of a pathogen. A mathematical model].
    Kolesin ID
    Biofizika; 1994; 39(5):927-30. PubMed ID: 7819321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exhibition of intrinsic properties of certain systems in response to external disturbances.
    Landa PS; Rabinovitch A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1829-38. PubMed ID: 11046468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the effects of carriers on transmission dynamics of infectious diseases.
    Kalajdzievska D; Li MY
    Math Biosci Eng; 2011 Jul; 8(3):711-22. PubMed ID: 21675806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spreading disease with transport-related infection.
    Cui J; Takeuchi Y; Saito Y
    J Theor Biol; 2006 Apr; 239(3):376-90. PubMed ID: 16219328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disease control: virtual plagues get real.
    Gewin V
    Nature; 2004 Feb; 427(6977):774-5. PubMed ID: 14985730
    [No Abstract]   [Full Text] [Related]  

  • 17. A model of spatial epidemic spread when individuals move within overlapping home ranges.
    Reluga TC; Medlock J; Galvani AP
    Bull Math Biol; 2006 Feb; 68(2):401-16. PubMed ID: 16794937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The estimation of the basic reproduction number for infectious diseases.
    Dietz K
    Stat Methods Med Res; 1993; 2(1):23-41. PubMed ID: 8261248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A mathematical model of the epidemic process in anthroponotic infection with stable and homogeneous factors].
    Beliakov VD; Gerasimov AN; Kravtsov IuV
    Zh Mikrobiol Epidemiol Immunobiol; 1991 Mar; (3):29-32. PubMed ID: 1872094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lyapunov functions and global properties for SEIR and SEIS epidemic models.
    Korobeinikov A
    Math Med Biol; 2004 Jun; 21(2):75-83. PubMed ID: 15228100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.