These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 7840603)

  • 1. Regulation of heme biosynthesis in Escherichia coli.
    Woodard SI; Dailey HA
    Arch Biochem Biophys; 1995 Jan; 316(1):110-5. PubMed ID: 7840603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the hemA gene product and delta-aminolevulinic acid in regulation of Escherichia coli heme synthesis.
    Verderber E; Lucast LJ; Van Dehy JA; Cozart P; Etter JB; Best EA
    J Bacteriol; 1997 Jul; 179(14):4583-90. PubMed ID: 9226269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis.
    Weinstein JD; Beale SI
    J Biol Chem; 1983 Jun; 258(11):6799-807. PubMed ID: 6133868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5-aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase.
    Shin JA; Kwon YD; Kwon OH; Lee HS; Kim P
    J Microbiol Biotechnol; 2007 Sep; 17(9):1579-84. PubMed ID: 18062242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli.
    Zhang J; Kang Z; Chen J; Du G
    Sci Rep; 2015 Feb; 5():8584. PubMed ID: 25716896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Over-production of porphyrins and heme in heterotrophic bacteria.
    Philipp-Dormston WK; Doss M
    Z Naturforsch C Biosci; 1975; 30(3):425-6. PubMed ID: 126586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biphasic ordered induction of heme synthesis in differentiating murine erythroleukemia cells: role of erythroid 5-aminolevulinate synthase.
    Lake-Bullock H; Dailey HA
    Mol Cell Biol; 1993 Nov; 13(11):7122-32. PubMed ID: 8413301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli.
    Ding W; Weng H; Du G; Chen J; Kang Z
    J Ind Microbiol Biotechnol; 2017 Aug; 44(8):1127-1135. PubMed ID: 28382525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Unusual pathways and environmentally regulated genes of bacterial heme biosynthesis].
    Jahn D; Hungerer C; Troup B
    Naturwissenschaften; 1996 Sep; 83(9):389-400. PubMed ID: 8965922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli.
    Lee MJ; Kim HJ; Lee JY; Kwon AS; Jun SY; Kang SH; Kim P
    J Microbiol Biotechnol; 2013 May; 23(5):668-73. PubMed ID: 23648857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biosynthesis of porphyrins, chlorophylls, and vitamin B12.
    Leeper FJ
    Nat Prod Rep; 1985 Feb; 2(1):19-47. PubMed ID: 3895052
    [No Abstract]   [Full Text] [Related]  

  • 12. Biosynthesis of delta-aminolevulinic acid and the regulation of heme formation by immature erythroid cells in man.
    Gardner LC; Smith SJ; Cox TM
    J Biol Chem; 1991 Nov; 266(32):22010-8. PubMed ID: 1939222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of 5-aminolevulinic acid synthesis deficiency on expression of other enzymes of heme pathway in yeast.
    Labbe-Bois R; Simon M; Rytka J; Litwinska J; Bilinski T
    Biochem Biophys Res Commun; 1980 Aug; 95(3):1357-63. PubMed ID: 6998476
    [No Abstract]   [Full Text] [Related]  

  • 14. High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis.
    Kwon SJ; de Boer AL; Petri R; Schmidt-Dannert C
    Appl Environ Microbiol; 2003 Aug; 69(8):4875-83. PubMed ID: 12902282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme-biosynthetic enzyme activities and porphyrin accumulation in normal liver and hepatoma cell lines of rat.
    Kondo M; Hirota N; Takaoka T; Kajiwara M
    Cell Biol Toxicol; 1993; 9(1):95-105. PubMed ID: 8390914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biochemistry of the porphyrins.
    Moore MR
    Clin Haematol; 1980 Jun; 9(2):227-52. PubMed ID: 6994963
    [No Abstract]   [Full Text] [Related]  

  • 17. 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain.
    Fu W; Lin J; Cen P
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):777-82. PubMed ID: 17333171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene.
    van der Werf MJ; Zeikus JG
    Appl Environ Microbiol; 1996 Oct; 62(10):3560-6. PubMed ID: 8837411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated Optimization of the In Vivo Heme Biosynthesis Pathway and the In Vitro Iron Concentration for 5-Aminolevulinate Production.
    Zhang J; Kang Z; Ding W; Chen J; Du G
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1252-62. PubMed ID: 26637361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and overexpression of the Rhodobacter capsulatus hemH gene.
    Kanazireva E; Biel AJ
    J Bacteriol; 1995 Nov; 177(22):6693-4. PubMed ID: 7592455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.