BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7840623)

  • 1. Delta-aminolevulinate increases heme saturation and yield of human cystathionine beta-synthase expressed in Escherichia coli.
    Kery V; Elleder D; Kraus JP
    Arch Biochem Biophys; 1995 Jan; 316(1):24-9. PubMed ID: 7840623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of human cystathionine beta-synthase in Escherichia coli: purification and characterization.
    Bukovska G; Kery V; Kraus JP
    Protein Expr Purif; 1994 Oct; 5(5):442-8. PubMed ID: 7827502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transsulfuration depends on heme in addition to pyridoxal 5'-phosphate. Cystathionine beta-synthase is a heme protein.
    Kery V; Bukovska G; Kraus JP
    J Biol Chem; 1994 Oct; 269(41):25283-8. PubMed ID: 7929220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic characterization of recombinant human cystathionine beta-synthase purified from E. coli.
    Belew MS; Quazi FI; Willmore WG; Aitken SM
    Protein Expr Purif; 2009 Apr; 64(2):139-45. PubMed ID: 19010420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of pyridoxal 5'-phosphate to the heme protein human cystathionine beta-synthase.
    Kery V; Poneleit L; Meyer JD; Manning MC; Kraus JP
    Biochemistry; 1999 Mar; 38(9):2716-24. PubMed ID: 10052942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein.
    Banerjee R; Zou CG
    Arch Biochem Biophys; 2005 Jan; 433(1):144-56. PubMed ID: 15581573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational control of erythroid delta-aminolevulinate synthase in immature human erythroid cells by heme.
    Smith SJ; Cox TM
    Cell Mol Biol (Noisy-le-grand); 1997 Feb; 43(1):103-14. PubMed ID: 9074795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trypsin cleavage of human cystathionine beta-synthase into an evolutionarily conserved active core: structural and functional consequences.
    Kery V; Poneleit L; Kraus JP
    Arch Biochem Biophys; 1998 Jul; 355(2):222-32. PubMed ID: 9675031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the heme and pyridoxal phosphate cofactors of human cystathionine beta-synthase reveals nonequivalent active sites.
    Taoka S; West M; Banerjee R
    Biochemistry; 1999 Mar; 38(9):2738-44. PubMed ID: 10052944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferrous human cystathionine beta-synthase loses activity during enzyme assay due to a ligand switch process.
    Cherney MM; Pazicni S; Frank N; Marvin KA; Kraus JP; Burstyn JN
    Biochemistry; 2007 Nov; 46(45):13199-210. PubMed ID: 17956124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dioxygen reactivity and heme redox potential of truncated human cystathionine beta-synthase.
    Carballal S; Madzelan P; Zinola CF; Graña M; Radi R; Banerjee R; Alvarez B
    Biochemistry; 2008 Mar; 47(10):3194-201. PubMed ID: 18278872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase.
    Shin JA; Kwon YD; Kwon OH; Lee HS; Kim P
    J Microbiol Biotechnol; 2007 Sep; 17(9):1579-84. PubMed ID: 18062242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High homocysteine and thrombosis without connective tissue disorders are associated with a novel class of cystathionine beta-synthase (CBS) mutations.
    Maclean KN; Gaustadnes M; Oliveriusová J; Janosík M; Kraus E; Kozich V; Kery V; Skovby F; Rüdiger N; Ingerslev J; Stabler SP; Allen RH; Kraus JP
    Hum Mutat; 2002 Jun; 19(6):641-55. PubMed ID: 12007221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity of cystathionine beta-synthase for pyridoxal 5'-phosphate in cultured cells. A mechanism for pyridoxine-responsive homocystinuria.
    Lipson MH; Kraus J; Rosenberg LE
    J Clin Invest; 1980 Aug; 66(2):188-93. PubMed ID: 7400312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of PLP-bound intermediates in hemeless variants of human cystathionine beta-synthase: evidence that lysine 119 is a general base.
    Evande R; Ojha S; Banerjee R
    Arch Biochem Biophys; 2004 Jul; 427(2):188-96. PubMed ID: 15196993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, overexpression, purification, and characterization of O-acetylserine sulfhydrylase-B from Escherichia coli.
    Zhao C; Kumada Y; Imanaka H; Imamura K; Nakanishi K
    Protein Expr Purif; 2006 Jun; 47(2):607-13. PubMed ID: 16546401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of cystathionine beta-synthase activity by the Arg-51 and Arg-224 mutations.
    Ozaki S; Inada A; Sada K
    Biosci Biotechnol Biochem; 2008 Sep; 72(9):2318-23. PubMed ID: 18776696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restoring assembly and activity of cystathionine β-synthase mutants by ligands and chemical chaperones.
    Kopecká J; Krijt J; Raková K; Kožich V
    J Inherit Metab Dis; 2011 Feb; 34(1):39-48. PubMed ID: 20490928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. System for the expression of recombinant hemoproteins in Escherichia coli.
    Varnado CL; Goodwin DC
    Protein Expr Purif; 2004 May; 35(1):76-83. PubMed ID: 15039069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-level production of recombinant Arenicola marina globin chains in Escherichia coli: a new generation of blood substitute.
    Harnois T; Rousselot M; Rogniaux H; Zal F
    Artif Cells Blood Substit Immobil Biotechnol; 2009; 37(3):106-16. PubMed ID: 19444743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.