BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7840639)

  • 1. Rigidity of the heme pocket in the cooperative Scapharca hemoglobin homodimer and relation to the direct communication between hemes.
    Ilari A; Boffi A; Chiancone E
    Arch Biochem Biophys; 1995 Jan; 316(1):378-84. PubMed ID: 7840639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the vinyl-globin interactions on the temperature-dependent broadening of the Soret spectra: a study with horse myoglobin and Scapharca dimeric hemoglobin reconstituted with unnatural 2,4-heme derivatives.
    Boffi A; Zamparelli C; Verzili D; Ilari A; Chiancone E
    Arch Biochem Biophys; 1997 Apr; 340(1):43-51. PubMed ID: 9126275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein dynamics: conformational disorder, vibrational coupling and anharmonicity in deoxy-hemoglobin and myoglobin.
    Cupane A; Leone M; Vitrano E
    Eur Biophys J; 1993; 21(6):385-91. PubMed ID: 8449173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein dynamics. Vibrational coupling, spectral broadening mechanisms, and anharmonicity effects in carbonmonoxy heme proteins studied by the temperature dependence of the Soret band lineshape.
    Di Pace A; Cupane A; Leone M; Vitrano E; Cordone L
    Biophys J; 1992 Aug; 63(2):475-84. PubMed ID: 1420893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal broadening of the Soret band in heme complexes and in heme-proteins: role of iron dynamics.
    Leone M; Cupane A; Militello V; Cordone L
    Eur Biophys J; 1994; 23(5):349-52. PubMed ID: 7835318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence study of the conformational properties of myoglobin structure. 3. pH-dependent changes in porphyrin and tryptophan fluorescence of the complex of sperm whale apomyoglobin with protoporphyrin IX; the role of the porphyrin macrocycle and iron in formation of native myoglobin structure.
    Postnikova GB; Yumakova EM
    Eur J Biochem; 1991 May; 198(1):241-6. PubMed ID: 2040285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The photoexcited triplet state as a probe of chromophore-protein interaction in myoglobin.
    Angiolillo PJ; Vanderkooi JM
    Biophys J; 1998 Sep; 75(3):1491-502. PubMed ID: 9726951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protoporphyrin IX-induced structural and functional changes in human red blood cells, haemoglobin and myoglobin.
    Sil S; Bose T; Roy D; Chakraborti AS
    J Biosci; 2004 Sep; 29(3):281-91. PubMed ID: 15381849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereodynamic properties of the cooperative homodimeric Scapharca inaequivalvis hemoglobin studied through optical absorption spectroscopy and ligand rebinding kinetics.
    Boffi A; Verzili D; Chiancone E; Leone M; Cupane A; Militello V; Vitrano E; Cordone L; Yu W; Di Iorio EE
    Biophys J; 1994 Oct; 67(4):1713-23. PubMed ID: 7819503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residue F4 plays a key role in modulating oxygen affinity and cooperativity in Scapharca dimeric hemoglobin.
    Knapp JE; Bonham MA; Gibson QH; Nichols JC; Royer WE
    Biochemistry; 2005 Nov; 44(44):14419-30. PubMed ID: 16262242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metastable CO binding sites in the photoproduct of a novel cooperative dimeric hemoglobin.
    Song S; Rothberg L; Rousseau DL; Boffi A; Chiancone E
    Biophys J; 1993 Nov; 65(5):1959-62. PubMed ID: 8298025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of oxygenated Scapharca dimeric hemoglobin at 1.7-A resolution.
    Condon PJ; Royer WE
    J Biol Chem; 1994 Oct; 269(41):25259-67. PubMed ID: 7929217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative studies on the interaction of protoporphyrin with hemoglobin and myoglobin.
    Sil S; Chakraborti AS
    Indian J Biochem Biophys; 1996 Aug; 33(4):285-91. PubMed ID: 8936818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium(II) and zinc(II)-protoporphyrin IX's stabilize the lowest oxygen affinity state of human hemoglobin even more strongly than deoxyheme.
    Miyazaki G; Morimoto H; Yun KM; Park SY; Nakagawa A; Minagawa H; Shibayama N
    J Mol Biol; 1999 Oct; 292(5):1121-36. PubMed ID: 10512707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic and theoretical studies of Ga(III)protoporphyrin-IX and its reactions with myoglobin.
    Pinter TB; Dodd EL; Bohle DS; Stillman MJ
    Inorg Chem; 2012 Mar; 51(6):3743-53. PubMed ID: 22372462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of cyanide binding to ferrous Scapharca inaequivalvis homodimeric hemoglobin.
    Boffi A; Chiancone E; Peterson ES; Wang J; Rousseau DL; Friedman JM
    Biochemistry; 1997 Apr; 36(15):4510-4. PubMed ID: 9109659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restricting the ligand-linked heme movement in Scapharca dimeric hemoglobin reveals tight coupling between distal and proximal contributions to cooperativity.
    Knapp JE; Gibson QH; Cushing L; Royer WE
    Biochemistry; 2001 Dec; 40(49):14795-805. PubMed ID: 11732898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circular dichroism of hemoglobin and myoglobin.
    Nagai M; Nagai Y; Imai K; Neya S
    Chirality; 2014 Sep; 26(9):438-42. PubMed ID: 24425582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heme symmetry, vibronic structure, and dynamics in heme proteins: ferrous nicotinate horse myoglobin and soybean leghemoglobin.
    Sanfratello V; Boffi A; Cupane A; Leone M
    Biopolymers; 2000; 57(5):291-305. PubMed ID: 10958321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of hydroxylated single-walled carbon nanotubes to two hemoproteins, hemoglobin and myoglobin.
    Wang YQ; Zhang HM; Cao J
    J Photochem Photobiol B; 2014 Dec; 141():26-35. PubMed ID: 25313539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.