These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 7840680)

  • 41. [Quantitative determination of the rate of superoxide radical formation in mitochondrial membranes by electron paramagnetic resonance].
    Rashba IuE; Vartanian LS; Baĭder LM; Krinitskaia LA
    Biofizika; 1989; 34(1):57-62. PubMed ID: 2543466
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Formation of hydrogen peroxide in the mitochondria of skeletal muscles].
    Koshkin VV
    Biokhimiia; 1984 Nov; 49(11):1908-11. PubMed ID: 6525365
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Effect of steroid hormones on production of reactive oxygen species in mitochondria].
    Fedotcheva TA; Kruglov AG; Teplova VV; Fedotcheva NI; Rzheznikov VM; Shimanovskiĭ NL
    Biofizika; 2012; 57(6):1014-9. PubMed ID: 23272582
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria.
    López-Torres M; Gredilla R; Sanz A; Barja G
    Free Radic Biol Med; 2002 May; 32(9):882-9. PubMed ID: 11978489
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mitochondrial function in sparrow pectoralis muscle.
    Kuzmiak S; Glancy B; Sweazea KL; Willis WT
    J Exp Biol; 2012 Jun; 215(Pt 12):2039-50. PubMed ID: 22623192
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of isoflurane on complex II‑associated mitochondrial respiration and reactive oxygen species production: Roles of nitric oxide and mitochondrial KATP channels.
    Wang J; Sun J; Qiao S; Li H; Che T; Wang C; An J
    Mol Med Rep; 2019 Nov; 20(5):4383-4390. PubMed ID: 31545457
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Topology of superoxide production from different sites in the mitochondrial electron transport chain.
    St-Pierre J; Buckingham JA; Roebuck SJ; Brand MD
    J Biol Chem; 2002 Nov; 277(47):44784-90. PubMed ID: 12237311
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antioxidant properties of rare sugar D-allose: Effects on mitochondrial reactive oxygen species production in Neuro2A cells.
    Ishihara Y; Katayama K; Sakabe M; Kitamura M; Aizawa M; Takara M; Itoh K
    J Biosci Bioeng; 2011 Dec; 112(6):638-42. PubMed ID: 21889400
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.
    Starkov AA; Fiskum G; Chinopoulos C; Lorenzo BJ; Browne SE; Patel MS; Beal MF
    J Neurosci; 2004 Sep; 24(36):7779-88. PubMed ID: 15356189
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of mitochondrial deficits and melatonin targets in liver of septic mice by high-resolution respirometry.
    Doerrier C; García JA; Volt H; Díaz-Casado ME; Lima-Cabello E; Ortiz F; Luna-Sánchez M; Escames G; López LC; Acuña-Castroviejo D
    Life Sci; 2015 Jan; 121():158-65. PubMed ID: 25498899
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Complex II of the mitochondrial respiratory chain is the key mediator of divalent manganese-induced hydrogen peroxide production in microglia.
    Liu Y; Barber DS; Zhang P; Liu B
    Toxicol Sci; 2013 Apr; 132(2):298-306. PubMed ID: 23315522
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax.
    Starkov AA; Polster BM; Fiskum G
    J Neurochem; 2002 Oct; 83(1):220-8. PubMed ID: 12358746
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of thyroid state on enzymatic and non-enzymatic processes in H2O2 removal by liver mitochondria of male rats.
    Venditti P; Napolitano G; Barone D; Coppola I; Di Meo S
    Mol Cell Endocrinol; 2015 Mar; 403():57-63. PubMed ID: 25597632
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [The effect of metabolites of the propionate pathway on the oxidative activity of liver mitochondria].
    Fedotcheva NI; Gessler NN; Bykhovskiĭ VIa; Kondrashova MN
    Biokhimiia; 1991 Mar; 56(3):426-33. PubMed ID: 1883904
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hepatic selective adjustments in short-term cold exposed rats.
    Iossa S; Barletta A; Liverini G
    Cell Biochem Funct; 1991 Oct; 9(4):275-80. PubMed ID: 1666984
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria.
    Kwong LK; Sohal RS
    Arch Biochem Biophys; 1998 Feb; 350(1):118-26. PubMed ID: 9466828
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.
    Kushnareva Y; Murphy AN; Andreyev A
    Biochem J; 2002 Dec; 368(Pt 2):545-53. PubMed ID: 12180906
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrochemical study of hydrogen peroxide formation in isolated mitochondria.
    Marcu R; Rapino S; Trinei M; Valenti G; Marcaccio M; Pelicci PG; Paolucci F; Giorgio M
    Bioelectrochemistry; 2012 Jun; 85():21-8. PubMed ID: 22197548
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidative capability of hepatic tissue in late sepsis.
    Clemens M; Chaudry IH; Baue AE
    Adv Shock Res; 1981; 6():55-64. PubMed ID: 7349586
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mitochondrial fatty acid oxidation and oxidative stress: lack of reverse electron transfer-associated production of reactive oxygen species.
    Schönfeld P; Wieckowski MR; Lebiedzińska M; Wojtczak L
    Biochim Biophys Acta; 2010; 1797(6-7):929-38. PubMed ID: 20085746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.