BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 7840772)

  • 1. The regulation of superoxide production by the NADPH oxidase of neutrophils and other mammalian cells.
    Jones OT
    Bioessays; 1994 Dec; 16(12):919-23. PubMed ID: 7840772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Taurine chloramine inhibits PMA-stimulated superoxide production in human neutrophils perhaps by inhibiting phosphorylation and translocation of p47(phox).
    Choi HS; Cha YN; Kim C
    Int Immunopharmacol; 2006 Sep; 6(9):1431-40. PubMed ID: 16846837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A point mutation in gp91-phox of cytochrome b558 of the human NADPH oxidase leading to defective translocation of the cytosolic proteins p47-phox and p67-phox.
    Leusen JH; de Boer M; Bolscher BG; Hilarius PM; Weening RS; Ochs HD; Roos D; Verhoeven AJ
    J Clin Invest; 1994 May; 93(5):2120-6. PubMed ID: 8182143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into the membrane topology of the phagocyte NADPH oxidase: characterization of an anti-gp91-phox conformational monoclonal antibody.
    Campion Y; Paclet MH; Jesaitis AJ; Marques B; Grichine A; Berthier S; Lenormand JL; Lardy B; Stasia MJ; Morel F
    Biochimie; 2007 Sep; 89(9):1145-58. PubMed ID: 17397983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent labeling of the leukocyte NADPH oxidase subunit p47(phox): evidence for amphiphile-induced conformational changes.
    Park HS; Park JW
    Arch Biochem Biophys; 1998 Dec; 360(2):165-72. PubMed ID: 9851827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of neutrophil NADPH oxidase proteins gp91-phox, p22-phox, p67-phox, and p47-phox in mammalian species.
    Hitt ND; Kleinberg ME
    Am J Vet Res; 1996 May; 57(5):672-6. PubMed ID: 8723880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the small GTPase Rac in p22phox-dependent NADPH oxidases.
    Miyano K; Sumimoto H
    Biochimie; 2007 Sep; 89(9):1133-44. PubMed ID: 17583407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A region C-terminal to the proline-rich core of p47phox regulates activation of the phagocyte NADPH oxidase by interacting with the C-terminal SH3 domain of p67phox.
    Mizuki K; Takeya R; Kuribayashi F; Nobuhisa I; Kohda D; Nunoi H; Takeshige K; Sumimoto H
    Arch Biochem Biophys; 2005 Dec; 444(2):185-94. PubMed ID: 16297854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the superoxide-producing enzyme of eosinophils and neutrophils--comparison of the NADPH oxidase components.
    Someya A; Nishijima K; Nunoi H; Irie S; Nagaoka I
    Arch Biochem Biophys; 1997 Sep; 345(2):207-13. PubMed ID: 9308891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of superoxide anion generation by CHS-111 via blockade of the p21-activated kinase, protein kinase B/Akt and protein kinase C signaling pathways in rat neutrophils.
    Chang LC; Lin RH; Huang LJ; Chang CS; Kuo SC; Wang JP
    Eur J Pharmacol; 2009 Aug; 615(1-3):207-17. PubMed ID: 19445920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation induces conformational changes in the leukocyte NADPH oxidase subunit p47(phox).
    Park HS; Kim IS; Park JW
    Biochem Biophys Res Commun; 1999 May; 259(1):38-42. PubMed ID: 10334912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 156Pro-->Gln substitution in the light chain of cytochrome b558 of the human NADPH oxidase (p22-phox) leads to defective translocation of the cytosolic proteins p47-phox and p67-phox.
    Leusen JH; Bolscher BG; Hilarius PM; Weening RS; Kaulfersch W; Seger RA; Roos D; Verhoeven AJ
    J Exp Med; 1994 Dec; 180(6):2329-34. PubMed ID: 7964505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The domain organization of p67 phox, a protein required for activation of the superoxide-producing NADPH oxidase in phagocytes.
    Yuzawa S; Miyano K; Honbou K; Inagaki F; Sumimoto H
    J Innate Immun; 2009; 1(6):543-55. PubMed ID: 20375610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of the respiratory burst in HL-60 cells. Correlation of function and protein expression.
    Levy R; Rotrosen D; Nagauker O; Leto TL; Malech HL
    J Immunol; 1990 Oct; 145(8):2595-601. PubMed ID: 2170520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets.
    Leto TL; Adams AG; de Mendez I
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10650-4. PubMed ID: 7938008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558.
    Heyworth PG; Curnutte JT; Nauseef WM; Volpp BD; Pearson DW; Rosen H; Clark RA
    J Clin Invest; 1991 Jan; 87(1):352-6. PubMed ID: 1985107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the process for superoxide production by NADPH oxidase in human neutrophils: evidence for cytoplasmic origin of superoxide.
    Kobayashi T; Tsunawaki S; Seguchi H
    Redox Rep; 2001; 6(1):27-36. PubMed ID: 11333112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of 1,25-dihydroxyvitamin D3, lipopolysaccharide, or lipoteichoic acid on the expression of NADPH oxidase components in cultured human monocytes.
    Levy R; Malech HL
    J Immunol; 1991 Nov; 147(9):3066-71. PubMed ID: 1655903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The superoxide generating system of B cell lines. Structural homology with the phagocytic oxidase and triggering via surface Ig.
    Maly FE; Cross AR; Jones OT; Wolf-Vorbeck G; Walker C; Dahinden CA; De Weck AL
    J Immunol; 1988 Apr; 140(7):2334-9. PubMed ID: 2832475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase.
    Sumimoto H; Hata K; Mizuki K; Ito T; Kage Y; Sakaki Y; Fukumaki Y; Nakamura M; Takeshige K
    J Biol Chem; 1996 Sep; 271(36):22152-8. PubMed ID: 8703027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.