These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. An autolytic substance in a freshwater cyanobacterium Phormidium tenue. Murakami N; Yamada N; Sakakibara J Chem Pharm Bull (Tokyo); 1990 Mar; 38(3):812-4. PubMed ID: 2112049 [TBL] [Abstract][Full Text] [Related]
4. Species specificity of musty odor producing Phormidium tenue in Lake Kamafusa. Oikawa E; Ishibashi Y Water Sci Technol; 2004; 49(9):41-6. PubMed ID: 15237605 [TBL] [Abstract][Full Text] [Related]
5. Effect of phytohormones on the growth dynamics and macromolecular contents of two extreme halophilic Cyanobacteria (Phormidium sps). Ravikumar S; Shiefa AN; Nanitha KS J Environ Biol; 2005 Jan; 26(1):55-9. PubMed ID: 16114462 [TBL] [Abstract][Full Text] [Related]
6. Screening of a hypersaline cyanobacterium, Phormidium tenue, for the degradation of aromatic hydrocarbons: naphthalene and anthracene. Kumar MS; Muralitharan G; Thajuddin N Biotechnol Lett; 2009 Dec; 31(12):1863-6. PubMed ID: 19633815 [TBL] [Abstract][Full Text] [Related]
7. Cell damage caused by ultraviolet B radiation in the desert cyanobacterium Phormidium tenue and its recovery process. Wang G; Deng S; Liu J; Ye C; Zhou X; Chen L Ecotoxicol Environ Saf; 2017 Oct; 144():315-320. PubMed ID: 28646736 [TBL] [Abstract][Full Text] [Related]
8. Growth on urea can trigger death and peroxidation of the cyanobacterium Synechococcus sp. strain PCC 7002. Sakamoto T; Delgaizo VB; Bryant DA Appl Environ Microbiol; 1998 Jul; 64(7):2361-6. PubMed ID: 9647800 [TBL] [Abstract][Full Text] [Related]
9. Generation of lysoglyceroglycolipids in the cyanobacterium, Phormidium tenue. Murakami N; Morimoto T; Ueda T; Nagai SI; Sakakibara J; Yamada N Phytochemistry; 1992 Aug; 31(8):2641-4. PubMed ID: 1368418 [TBL] [Abstract][Full Text] [Related]
10. Response of microalgae to elevated CO2 and temperature: impact of climate change on freshwater ecosystems. Li W; Xu X; Fujibayashi M; Niu Q; Tanaka N; Nishimura O Environ Sci Pollut Res Int; 2016 Oct; 23(19):19847-60. PubMed ID: 27421856 [TBL] [Abstract][Full Text] [Related]
11. The effect of bacteria on the sensitivity of microalgae to copper in laboratory bioassays. Levy JL; Stauber JL; Wakelin SA; Jolley DF Chemosphere; 2009 Mar; 74(9):1266-74. PubMed ID: 19101014 [TBL] [Abstract][Full Text] [Related]
12. [Production of hydroxy and oxo fatty acids by microorganisms as a model of adipocere formation]. Gotouda H Hokkaido Igaku Zasshi; 1991 Mar; 66(2):142-50. PubMed ID: 1905675 [TBL] [Abstract][Full Text] [Related]
13. Speculations on a possible essential function of the gelatinous sheath of blue-green algae. Lange W Can J Microbiol; 1976 Aug; 22(8):1181-5. PubMed ID: 822932 [TBL] [Abstract][Full Text] [Related]
17. Earthy odor compounds production and loss in three cyanobacterial cultures. Li Z; Hobson P; An W; Burch MD; House J; Yang M Water Res; 2012 Oct; 46(16):5165-73. PubMed ID: 22818951 [TBL] [Abstract][Full Text] [Related]
18. Strategy to obtain axenic cultures from field-collected samples of the cyanobacterium Phormidium animalis. Vázquez-Martínez G; Rodriguez MH; Hernández-Hernández F; Ibarra JE J Microbiol Methods; 2004 Apr; 57(1):115-21. PubMed ID: 15003694 [TBL] [Abstract][Full Text] [Related]
19. Nutrient Acquisition and Population Growth of a Mixotrophic Alga in Axenic and Bacterized Cultures. Sanders RW; Caron DA; Davidson JM; Dennett MR; Moran DM Microb Ecol; 2001 Dec; 42(4):513-523. PubMed ID: 12024234 [TBL] [Abstract][Full Text] [Related]
20. Bicarbonate-based Integrated Carbon Capture and Algae Production System with alkalihalophilic cyanobacterium. Chi Z; Xie Y; Elloy F; Zheng Y; Hu Y; Chen S Bioresour Technol; 2013 Apr; 133():513-21. PubMed ID: 23455223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]