BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 7842518)

  • 1. Localization of calretinin in cells of layer I (Cajal-Retzius cells) of the developing cortex of the rat.
    Weisenhorn DM; Prieto EW; Celio MR
    Brain Res Dev Brain Res; 1994 Oct; 82(1-2):293-7. PubMed ID: 7842518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamate-like immunoreactivity and fate of Cajal-Retzius cells in the murine cortex as identified with calretinin antibody.
    del Río JA; Martínez A; Fonseca M; Auladell C; Soriano E
    Cereb Cortex; 1995; 5(1):13-21. PubMed ID: 7719127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin.
    Hevner RF; Neogi T; Englund C; Daza RA; Fink A
    Brain Res Dev Brain Res; 2003 Mar; 141(1-2):39-53. PubMed ID: 12644247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex.
    Meyer G; Soria JM; Martínez-Galán JR; Martín-Clemente B; Fairén A
    J Comp Neurol; 1998 Aug; 397(4):493-518. PubMed ID: 9699912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient co-localization of calretinin, parvalbumin, and calbindin-D28K in developing visual cortex of monkey.
    Yan YH; Van Brederode JF; Hendrickson AE
    J Neurocytol; 1995 Nov; 24(11):825-37. PubMed ID: 8576712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of the cortical layer I in rodents.
    Jiménez D; Rivera R; López-Mascaraque L; De Carlos JA
    Dev Neurosci; 2003; 25(2-4):105-15. PubMed ID: 12966209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calretinin-immunoreactivity during postnatal development of the rat isocortex: a qualitative and quantitative study.
    Schierle GS; Gander JC; D'Orlando C; Ceilo MR; Vogt Weisenhorn DM
    Cereb Cortex; 1997 Mar; 7(2):130-42. PubMed ID: 9087821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-binding protein immunoreactivity in the piriform cortex of the guinea-pig: selective staining of subsets of non-GABAergic neurons by calretinin.
    Frassoni C; Radici C; Spreafico R; de Curtis M
    Neuroscience; 1998 Mar; 83(1):229-37. PubMed ID: 9466412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of layer I of the human cerebral cortex after midgestation: architectonic findings, immunocytochemical identification of neurons and glia, and in situ labeling of apoptotic cells.
    Spreafico R; Arcelli P; Frassoni C; Canetti P; Giaccone G; Rizzuti T; Mastrangelo M; Bentivoglio M
    J Comp Neurol; 1999 Jul; 410(1):126-42. PubMed ID: 10397400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Cajal-Retzius cells and other calretinin-positive neurons in cetacean cerebral cortex].
    Revishchin AV
    Dokl Akad Nauk; 1998 Nov; 363(3):412-4. PubMed ID: 9891214
    [No Abstract]   [Full Text] [Related]  

  • 11. Expression of calretinin in diverse neuronal populations during development of rat hippocampus.
    Jiang M; Swann JW
    Neuroscience; 1997 Dec; 81(4):1137-54. PubMed ID: 9330374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calretinin-positive Cajal-Retzius cells persist in the adult human neocortex.
    Belichenko PV; Vogt Weisenhorn DM; Myklóssy J; Celio MR
    Neuroreport; 1995 Oct; 6(14):1869-74. PubMed ID: 8547587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early expression of sodium channel transcripts and sodium current by cajal-retzius cells in the preplate of the embryonic mouse neocortex.
    Albrieux M; Platel JC; Dupuis A; Villaz M; Moody WJ
    J Neurosci; 2004 Feb; 24(7):1719-25. PubMed ID: 14973256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cajal-Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins.
    Huntley GW; Jones EG
    J Neurocytol; 1990 Apr; 19(2):200-12. PubMed ID: 2358829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calretinin-immunoreactive neurons in the normal human temporal cortex and in Alzheimer's disease.
    Fonseca M; Soriano E
    Brain Res; 1995 Sep; 691(1-2):83-91. PubMed ID: 8590068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basic fibroblast growth factor promotes the generation and differentiation of calretinin neurons in the rat cerebral cortex in vitro.
    Pappas IS; Parnavelas JG
    Eur J Neurosci; 1998 Apr; 10(4):1436-45. PubMed ID: 9749798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel calretinin and reelin expressing neuronal population includes Cajal-Retzius-type cells in the neocortex of adult pigs.
    Abrahám H; Tóth Z; Bari F; Domoki F; Seress L
    Neuroscience; 2005; 136(1):217-30. PubMed ID: 16181738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective expression of doublecortin and LIS1 in developing human cortex suggests unique modes of neuronal movement.
    Meyer G; Perez-Garcia CG; Gleeson JG
    Cereb Cortex; 2002 Dec; 12(12):1225-36. PubMed ID: 12427674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the foetal human neocortex.
    Meyer G; Wahle P
    Eur J Neurosci; 1999 Nov; 11(11):3937-44. PubMed ID: 10583482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degeneration of Cajal-Retzius cells in the developing cerebral cortex of the mouse after ablation of meningeal cells by 6-hydroxydopamine.
    Supèr H; Martínez A; Soriano E
    Brain Res Dev Brain Res; 1997 Jan; 98(1):15-20. PubMed ID: 9027400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.