These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 7842644)

  • 1. Magnetic resonance imaging artifacts and the magnetic attachment system.
    Iimuro FT
    Dent Mater J; 1994 Jun; 13(1):76-88. PubMed ID: 7842644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of mechanical deformation on magnetic properties and MRI artifacts of type 304 and type 316L stainless steel.
    Bendel LP; Shellock FG; Steckel M
    J Magn Reson Imaging; 1997; 7(6):1170-3. PubMed ID: 9400866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of MRI safety issues for stainless steel sutures used for microtia reconstruction.
    Kraai TL; Loch RB; Shellock FG
    J Plast Reconstr Aesthet Surg; 2018 Oct; 71(10):1469-1475. PubMed ID: 30007538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Signal loss in magnetic resonance imaging caused by intraoral anchored dental magnetic materials].
    Blankenstein FH; Truong B; Thomas A; Schröder RJ; Naumann M
    Rofo; 2006 Aug; 178(8):787-93. PubMed ID: 16862505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MR imaging artifacts produced by dental materials.
    Fache JS; Price C; Hawbolt EB; Li DK
    AJNR Am J Neuroradiol; 1987; 8(5):837-40. PubMed ID: 3118677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging in patients with dental implants: a clinical report.
    Devge C; Tjellström A; Nellström H
    Int J Oral Maxillofac Implants; 1997; 12(3):354-9. PubMed ID: 9197100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pediatric cardiovascular interventional devices: effect on CMR images at 1.5 and 3 Tesla.
    Khan SN; Rapacchi S; Levi DS; Finn JP
    J Cardiovasc Magn Reson; 2013 Jun; 15(1):54. PubMed ID: 23782716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictability of magnetic susceptibility artifacts from metallic orthodontic appliances in magnetic resonance imaging.
    Blankenstein F; Truong BT; Thomas A; Thieme N; Zachriat C
    J Orofac Orthop; 2015 Jan; 76(1):14-29. PubMed ID: 25420942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallic spinal artifacts in magnetic resonance imaging.
    Vaccaro AR; Chesnut RM; Scuderi G; Healy JF; Massie JB; Garfin SR
    Spine (Phila Pa 1976); 1994 Jun; 19(11):1237-42. PubMed ID: 8073315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of CT imaging artifacts from craniomaxillofacial internal fixation devices.
    Fiala TG; Novelline RA; Yaremchuk MJ
    Plast Reconstr Surg; 1993 Dec; 92(7):1227-32. PubMed ID: 8248397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of susceptibility artifacts produced on high-field magnetic resonance images by various biomaterials used for neurosurgical implants. Technical note.
    Matsuura H; Inoue T; Konno H; Sasaki M; Ogasawara K; Ogawa A
    J Neurosurg; 2002 Dec; 97(6):1472-5. PubMed ID: 12507151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance image degradation from prosthetic magnet keepers.
    Laurell KA; Gegauff AG; Rosenstiel SF
    J Prosthet Dent; 1989 Sep; 62(3):344-8. PubMed ID: 2681704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of artifact from craniomaxillofacial internal fixation devices: magnetic resonance imaging.
    Fiala TG; Paige KT; Davis TL; Campbell TA; Rosen BR; Yaremchuk MJ
    Plast Reconstr Surg; 1994 Apr; 93(4):725-31. PubMed ID: 8134430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Impact of magnetic attachment keepers on magnetic resonance imaging examination].
    Zhao XZ; Liu YH; Xu J; Han HB; Xu XJ
    Beijing Da Xue Xue Bao Yi Xue Ban; 2010 Feb; 42(1):67-73. PubMed ID: 20140047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations into the failure of dental magnets.
    Riley MA; Williams AJ; Speight JD; Walmsley AD; Harris IR
    Int J Prosthodont; 1999; 12(3):249-54. PubMed ID: 10635193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparison of susceptibility artifacts generated by microchips with different geometry at 1.5 Tesla magnet resonance imaging. A phantom pilot study referring to the ASTM standard test method F2119-07].
    Dengg S; Kneissl S
    Tierarztl Prax Ausg K Kleintiere Heimtiere; 2013; 41(5):289-96. PubMed ID: 24127025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the WARP-turbo spin echo sequence for 3 Tesla magnetic resonance imaging of stifle joints in dogs with stainless steel tibial plateau leveling osteotomy implants.
    Simpler RE; Kerwin SC; Eichelberger BM; Wall CR; Thompson JA; Padua A; Purdy D; Griffin JF
    Vet Radiol Ultrasound; 2014; 55(4):414-9. PubMed ID: 24438513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance imaging of microstructure transition in stainless steel.
    Peeters JM; van Faassen EE; Bakker CJ
    Magn Reson Imaging; 2006 Jun; 24(5):663-72. PubMed ID: 16735191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of magnetic and radiographic imaging artifact after using three types of metal rods: stainless steel, titanium, and vitallium.
    Knott PT; Mardjetko SM; Kim RH; Cotter TM; Dunn MM; Patel ST; Spencer MJ; Wilson AS; Tager DS
    Spine J; 2010 Sep; 10(9):789-94. PubMed ID: 20619749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative MRI compatibility of 316 L stainless steel alloy and nickel-titanium alloy stents.
    Holton A; Walsh E; Anayiotos A; Pohost G; Venugopalan R
    J Cardiovasc Magn Reson; 2002; 4(4):423-30. PubMed ID: 12549230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.