These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7842739)

  • 41. Stable and unstable chromosome aberrations measured after occupational exposure to ionizing radiation and ultrasound.
    Fucić A; Zeljezić D; Kasuba V; Kopjar N; Rozgaj R; Lasan R; Mijić A; Hitrec V; Lucas JN
    Croat Med J; 2007 Jun; 48(3):371-7. PubMed ID: 17589981
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of short telomeres in inducing preferential chromosomal aberrations in human ovarian surface epithelial cells: A combined telomere quantitative fluorescence in situ hybridization and whole-chromosome painting study.
    Deng W; Tsao SW; Guan XY; Lucas JN; Cheung AL
    Genes Chromosomes Cancer; 2003 May; 37(1):92-7. PubMed ID: 12661010
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Karyotyping human chromosomes by combinatorial multi-fluor FISH.
    Speicher MR; Gwyn Ballard S; Ward DC
    Nat Genet; 1996 Apr; 12(4):368-75. PubMed ID: 8630489
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hidden chromosome abnormalities in haematological malignancies detected by multicolour spectral karyotyping.
    Veldman T; Vignon C; Schröck E; Rowley JD; Ried T
    Nat Genet; 1997 Apr; 15(4):406-10. PubMed ID: 9090389
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [In situ ++hybridization with painting probes in the definition of reciprocal translocations].
    Pierluigi M; Perfumo C; Arslanian A; Giannotti A; Dagna Bricarelli F
    Pathologica; 1994 Feb; 86(1):106-9. PubMed ID: 8072796
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A chromosome painting method for human sperm chromosomes using fluorescent in situ hybridization.
    Cui X; Tateno H; Hayata I; Sato K; Kamiguchi Y
    Jpn J Hum Genet; 1994 Jun; 39(2):255-8. PubMed ID: 8086643
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chromosomal rearrangements detected by FISH and G-banding.
    Hou JW; Wang TR
    J Formos Med Assoc; 1996 Sep; 95(9):686-91. PubMed ID: 8918057
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Frequencies of X-ray induced pericentric inversions and centric rings in human blood lymphocytes detected by FISH using chromosome arm specific DNA libraries.
    Natarajan AT; Boei JJ; Vermeulen S; Balajee AS
    Mutat Res; 1996 Nov; 372(1):1-7. PubMed ID: 9003525
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In situ hybridization of fluorescent probes on chromosomes, nuclei or stretched DNA: applications in physical mapping and characterization of genomic rearrangements.
    Desmaze C; Aurias A
    Cell Mol Biol (Noisy-le-grand); 1995 Nov; 41(7):925-31. PubMed ID: 8595371
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Non-fluorescent chromosome painting using the peroxidase/diaminobenzidine (DAB) reaction.
    Kanda R; Suzuki M; Minamihisamatsu M; Furukawa A; Odaka T; Hayata I
    Int J Radiat Biol; 1998 May; 73(5):529-33. PubMed ID: 9652810
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of chromosome size on aberration levels caused by gamma radiation as detected by fluorescence in situ hybridization.
    Pandita TK; Gregoire V; Dhingra K; Hittelman WN
    Cytogenet Cell Genet; 1994; 67(2):94-101. PubMed ID: 8039428
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of a complex rearrangement of a chromosome 20 by FISH and array CGH.
    Bertini V; Valetto A; Baroncelli GI; Simi P
    Eur J Med Genet; 2011; 54(4):e419-24. PubMed ID: 21440097
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic analysis by chromosome sorting and painting: phylogenetic and diagnostic applications.
    Ferguson-Smith MA
    Eur J Hum Genet; 1997; 5(5):253-65. PubMed ID: 9412781
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The development of painting probes for dual-color and multiple chromosome analysis in the mouse.
    Breneman JW; Swiger RR; Ramsey MJ; Minkler JL; Eveleth JG; Langlois RA; Tucker JD
    Cytogenet Cell Genet; 1995; 68(3-4):197-202. PubMed ID: 7842736
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Confirmation of isochromosome 18p using whole chromosome arm-specific fluorescence in situ hybridization.
    Mewar R; Harrison W; Overhauser J
    Cytogenet Cell Genet; 1993; 64(1):1-4. PubMed ID: 8508672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Several chromosomes involved in translocations with chromosome 5 shown with fluorescence in situ hybridization in patients with malignant myeloid disorders.
    Bram S; Rödjer S; Swolin B
    Cancer Genet Cytogenet; 2004 Nov; 155(1):74-8. PubMed ID: 15527906
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Radiation-produced chromosome aberrations: colourful clues.
    Sachs RK; Hlatky LR; Trask BJ
    Trends Genet; 2000 Apr; 16(4):143-6. PubMed ID: 10729825
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using graph theory to describe and model chromosome aberrations.
    Sachs RK; Arsuaga J; Vázquez M; Hlatky L; Hahnfeldt P
    Radiat Res; 2002 Nov; 158(5):556-67. PubMed ID: 12385633
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proximity effects for chromosome aberrations measured by FISH.
    Chen AM; Lucas JN; Hill FS; Brenner DJ; Sachs RK
    Int J Radiat Biol; 1996 Apr; 69(4):411-20. PubMed ID: 8627123
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the scoring of FISH-"painted" chromosome-type exchange aberrations.
    Savage JR; Simpson P
    Mutat Res; 1994 May; 307(1):345-53. PubMed ID: 7513815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.