These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Novel insights in the control of tetrapyrrole metabolism of higher plants. Grimm B Curr Opin Plant Biol; 1998 Jun; 1(3):245-50. PubMed ID: 10066589 [TBL] [Abstract][Full Text] [Related]
4. Synechococcus PCC6301 mutants possessing resistance to the tetrapyrrole biosynthesis inhibitor gabaculine. Chappell DL; Rogers LJ; Smith AJ Biochem Soc Trans; 1992 Aug; 20(3):285S. PubMed ID: 1426569 [No Abstract] [Full Text] [Related]
5. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis. Czarnecki O; Peter E; Grimm B Methods Mol Biol; 2011; 775():357-85. PubMed ID: 21863454 [TBL] [Abstract][Full Text] [Related]
6. Green or red: what stops the traffic in the tetrapyrrole pathway? Cornah JE; Terry MJ; Smith AG Trends Plant Sci; 2003 May; 8(5):224-30. PubMed ID: 12758040 [TBL] [Abstract][Full Text] [Related]
10. Regulation and function of tetrapyrrole biosynthesis in plants and algae. Brzezowski P; Richter AS; Grimm B Biochim Biophys Acta; 2015 Sep; 1847(9):968-85. PubMed ID: 25979235 [TBL] [Abstract][Full Text] [Related]
11. Transport of tetrapyrroles by proteins. Muller-Eberhard U; Nikkilä H Semin Hematol; 1989 Apr; 26(2):86-104. PubMed ID: 2658093 [No Abstract] [Full Text] [Related]
12. [Low-temperature delayed fluorescence of phycobilins in red algae]. Krasnovskiĭ AA; Kovalev IuV Biofizika; 1981; 26(4):724-5. PubMed ID: 7284460 [No Abstract] [Full Text] [Related]
13. [Biosynthesis of corrinoids and other tetrapyrrole compounds by an acetogenic Clostridium]. Bykhovskiĭ VIa; Ilarionov SA; Zaĭtseva NI Prikl Biokhim Mikrobiol; 1984; 20(1):3-8. PubMed ID: 6701162 [TBL] [Abstract][Full Text] [Related]
14. Optical properties and structure of tetrapyrroles. A report of a symposium held at the University of Konstanz, FRG, August 12-17, 1984. Sund H; Blauer G FEBS Lett; 1985 Jul; 186(2):139-42. PubMed ID: 4007161 [TBL] [Abstract][Full Text] [Related]
15. Amitrole treatment of etiolated barley seedlings leads to deregulation of tetrapyrrole synthesis and to reduced expression of Lhc and RbcS genes. La Rocca N; Rascio N; Oster U; Rüdiger W Planta; 2001 May; 213(1):101-8. PubMed ID: 11523645 [TBL] [Abstract][Full Text] [Related]
16. On the possibility of involvement of glutamate:glyoxylate and serine:glyoxylate aminotransferases from rye (Secale cereale L.) seedlings in the metabolism of tetrapyrrole compounds. Paszkowski A Acta Biochim Pol; 1992; 39(4):345-53. PubMed ID: 1293892 [TBL] [Abstract][Full Text] [Related]
17. [Biosynthesis of corriphyrins - a new branch of metabolism of tetrapyrrole compounds]. Bykhovskiĭ VIa; Zantseva NI Prikl Biokhim Mikrobiol; 1977; 13(6):872-80. PubMed ID: 600920 [TBL] [Abstract][Full Text] [Related]
18. Tetrapyrrole biosynthesis in higher plants. Tanaka R; Tanaka A Annu Rev Plant Biol; 2007; 58():321-46. PubMed ID: 17227226 [TBL] [Abstract][Full Text] [Related]