BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7842853)

  • 1. Biosynthetic studies on chlorophylls: from protoporphyrin IX to protochlorophyllide.
    Castelfranco PA; Walker CJ; Weinstein JD
    Ciba Found Symp; 1994; 180():194-204; discussion 205-9. PubMed ID: 7842853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of chlorophylls from protoporphyrin IX.
    Willows RD
    Nat Prod Rep; 2003 Jun; 20(3):327-41. PubMed ID: 12828371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants.
    Tripathy BC; Rebeiz CA
    J Biol Chem; 1986 Oct; 261(29):13556-64. PubMed ID: 3759979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloroplast biogenesis. Net synthesis of protochlorophyllide from protoporphyrin IX by developing chloroplasts.
    Mattheis JR; Rebeiz CA
    J Biol Chem; 1977 Dec; 252(23):8347-9. PubMed ID: 924999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method for isolating physiologically active Mg-protoporphyrin monomethyl ester, the substrate of the cyclase enzyme of the chlorophyll biosynthetic pathway.
    Gough SP; Rzeznicka K; Peterson Wulff R; Francisco Jda C; Hansson A; Jensen PE; Hansson M
    Plant Physiol Biochem; 2007 Dec; 45(12):932-6. PubMed ID: 17949988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eliminating interference by anthocyanins when determining the porphyrin ratio of red plant leaves.
    Lee TC; Shih TH; Huang MY; Lin KH; Huang WD; Yang CM
    J Photochem Photobiol B; 2018 Oct; 187():106-112. PubMed ID: 30121420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion obstacle from Mg-protoporphyrin IX to protochlorophyllide might be responsible for chlorophyll-deficient phenotype of the Huangjinya's albino offspring.
    Li CY; Hu SY; Yang WT; Yang HZ; Zhang WW; Ye JH; Zheng XQ; Liang YR; Dong ZB; Lu JL
    Plant Physiol Biochem; 2024 Jul; 212():108778. PubMed ID: 38838570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloroplast biogenesis. Net synthesis of protochlorophyllide from magnesium-protoporphyrin monoester by developing chloroplasts.
    Mattheis JR; Rebeiz CA
    J Biol Chem; 1977 Jun; 252(12):4022-4. PubMed ID: 863915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloroplast signalling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus.
    Kropat J; Oster U; Rüdiger W; Beck CF
    Plant J; 2000 Nov; 24(4):523-31. PubMed ID: 11115133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Localization of Mg-protoporphyrin IX monomethyl ester in chloroplast submembrane particles of barley].
    Shlyk AA; Fradkin LI; Shalygo NV; Averina NG
    Biofizika; 1981; 26(6):1102-4. PubMed ID: 7317499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectrofluorometric estimation of intermediates of chlorophyll biosynthesis: protoporphyrin IX, Mg-protoporphyrin, and protochlorophyllide.
    Hukmani P; Tripathy BC
    Anal Biochem; 1992 Oct; 206(1):125-30. PubMed ID: 1456423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of divinyl protochlorophyllide. Enzymological properties of the Mg-protoporphyrin IX monomethyl ester oxidative cyclase system.
    Walker CJ; Castelfranco PA; Whyte BJ
    Biochem J; 1991 Jun; 276 ( Pt 3)(Pt 3):691-7. PubMed ID: 1905926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential distribution of chlorophyll biosynthetic intermediates in stroma, envelope and thylakoid membranes in Beta vulgaris.
    Mohapatra A; Tripathy BC
    Photosynth Res; 2007; 94(2-3):401-10. PubMed ID: 17638115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking chlorophyll biosynthesis to a dynamic plastoquinone pool.
    Steccanella V; Hansson M; Jensen PE
    Plant Physiol Biochem; 2015 Dec; 97():207-16. PubMed ID: 26480470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yellow-Leaf 1 encodes a magnesium-protoporphyrin IX monomethyl ester cyclase, involved in chlorophyll biosynthesis in rice (Oryza sativa L.).
    Sheng Z; Lv Y; Li W; Luo R; Wei X; Xie L; Jiao G; Shao G; Wang J; Tang S; Hu P
    PLoS One; 2017; 12(5):e0177989. PubMed ID: 28558018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of the isocyclic ring of chlorophyll by isolated Chlamydomonas reinhardtii chloroplasts.
    Bollivar DW; Beale SI
    Photosynth Res; 1995 Feb; 43(2):113-24. PubMed ID: 24306744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of regulation and interplastid localization of chlorophyll biosynthesis.
    Averina NG
    Membr Cell Biol; 1998; 12(5):627-43. PubMed ID: 10379645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The magnesium-protoporphyrin IX (oxidative) cyclase system. Studies on the mechanism and specificity of the reaction sequence.
    Walker CJ; Mansfield KE; Rezzano IN; Hanamoto CM; Smith KM; Castelfranco PA
    Biochem J; 1988 Oct; 255(2):685-92. PubMed ID: 3202840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The regulation of enzymes involved in chlorophyll biosynthesis.
    Reinbothe S; Reinbothe C
    Eur J Biochem; 1996 Apr; 237(2):323-43. PubMed ID: 8647070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of continuous assays to characterize the oxidative cyclase that synthesizes the chlorophyll isocyclic ring.
    Nasrulhaq-Boyce A; Griffiths WT; Jones OT
    Biochem J; 1987 Apr; 243(1):23-9. PubMed ID: 3606572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.