These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 7844010)
21. Multifield coupled finite element analysis for sound transmission in otitis media with effusion. Gan RZ; Wang X J Acoust Soc Am; 2007 Dec; 122(6):3527-38. PubMed ID: 18247761 [TBL] [Abstract][Full Text] [Related]
23. Clinical applications of a finite-element model of the human middle ear. Daniel SJ; Funnell WR; Zeitouni AG; Schloss MD; Rappaport J J Otolaryngol; 2001 Dec; 30(6):340-6. PubMed ID: 11771004 [TBL] [Abstract][Full Text] [Related]
24. A revised model of loudness perception applied to cochlear hearing loss. Moore BC; Glasberg BR Hear Res; 2004 Feb; 188(1-2):70-88. PubMed ID: 14759572 [TBL] [Abstract][Full Text] [Related]
25. Sound transmission in archaic and modern whales: anatomical adaptations for underwater hearing. Nummela S; Thewissen JG; Bajpai S; Hussain T; Kumar K Anat Rec (Hoboken); 2007 Jun; 290(6):716-33. PubMed ID: 17516434 [TBL] [Abstract][Full Text] [Related]
28. [Multifrequency tympanometry in Meniere's disease: preliminary results]. Bianchedi M; Croce A; Neri G; Moretti A Acta Otorhinolaryngol Ital; 1996 Feb; 16(1):1-5. PubMed ID: 8984834 [TBL] [Abstract][Full Text] [Related]
29. [Muffling of sound conduction in ear ossicles by means of fluids: an experimental study on the human temporal bones]. Cancura W Monatsschr Ohrenheilkd Laryngorhinol; 1966; 100(1-2):14-8. PubMed ID: 5974566 [No Abstract] [Full Text] [Related]
31. [Functional model of the middle ear ossicles]. Satoda T; Shimoe S; Makihira S; Tamamoto M; Matsumoto A; Hara K; Noso M; Niitani Y; Sugiyama M; Takemoto T; Murayama T; Amano H; Nikawa H Kaibogaku Zasshi; 2009 Jun; 84(2):41-6. PubMed ID: 19562938 [TBL] [Abstract][Full Text] [Related]
32. Tonic contractions of the tensor tympani muscle: a key to some non-specific middle ear symptoms? Hypothesis and data from temporal bone experiments. Pau HW; Punke C; Zehlicke T; Dressler D; Sievert U Acta Otolaryngol; 2005 Nov; 125(11):1168-75. PubMed ID: 16243741 [TBL] [Abstract][Full Text] [Related]
33. Computer-integrated finite element modeling of human middle ear. Sun Q; Gan RZ; Chang KH; Dormer KJ Biomech Model Mechanobiol; 2002 Oct; 1(2):109-22. PubMed ID: 14595544 [TBL] [Abstract][Full Text] [Related]
34. Middle ear of human and pig: a comparison of structures and mechanics. Hoffstetter M; Lugauer F; Kundu S; Wacker S; Perea-Saveedra H; Lenarz T; Hoffstetter P; Schreyer AG; Wintermantel E Biomed Tech (Berl); 2011 Jun; 56(3):159-65. PubMed ID: 21657989 [TBL] [Abstract][Full Text] [Related]
35. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
36. Static and dynamic forces in the incudostapedial joint gap. Koch M; Eßinger TM; Angerer M; Stoppe T; Bornitz M; Neudert M; Zahnert T Hear Res; 2019 Jul; 378():92-100. PubMed ID: 30833144 [TBL] [Abstract][Full Text] [Related]
37. Measurement of young's modulus of human tympanic membrane at high strain rates. Luo H; Dai C; Gan RZ; Lu H J Biomech Eng; 2009 Jun; 131(6):064501. PubMed ID: 19449971 [TBL] [Abstract][Full Text] [Related]