These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 7844112)

  • 1. Extracellular ascorbate stabilization: enzymatic or chemical process?
    Rodríguez-Aguilera JC; Navas P
    J Bioenerg Biomembr; 1994 Aug; 26(4):379-84. PubMed ID: 7844112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant ascorbate is stabilized by NADH-coenzyme Q10 reductase in the plasma membrane.
    Gómez-Díaz C; Rodríguez-Aguilera JC; Barroso MP; Villalba JM; Navarro F; Crane FL; Navas P
    J Bioenerg Biomembr; 1997 Jun; 29(3):251-7. PubMed ID: 9298710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ascorbate is regenerated by HL-60 cells through the transplasmalemma redox system.
    Alcain FJ; Buron MI; Villalba JM; Navas P
    Biochim Biophys Acta; 1991 Mar; 1073(2):380-5. PubMed ID: 2009284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A plasma membrane redox system in human retinoblastoma cells.
    Medina MA; Schweigerer L
    Biochem Mol Biol Int; 1993 Apr; 29(5):881-7. PubMed ID: 8389632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ascorbate stabilization is stimulated in rho(0)HL-60 cells by CoQ10 increase at the plasma membrane.
    Gómez-Díaz C; Villalba JM; Pérez-Vicente R; Crane FL; Navas P
    Biochem Biophys Res Commun; 1997 May; 234(1):79-81. PubMed ID: 9168964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transplasma membrane redox system of HL-60 cells is controlled by cAMP.
    Rodríguez-Aguilera JC; Nakayama K; Arroyo A; Villalba JM; Navas P
    J Biol Chem; 1993 Dec; 268(35):26346-9. PubMed ID: 8253758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascorbate free radical stimulates the growth of a human promyelocytic leukemia cell line.
    Alcaín FJ; Burón MI; Rodríguez-Aguilera JC; Villalba JM; Navas P
    Cancer Res; 1990 Sep; 50(18):5887-91. PubMed ID: 2393860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. No enzymatic activities are necessary for the stabilization of ascorbic acid by K-562 cells.
    Schweinzer E; Waeg G; Esterbauer H; Goldenberg H
    FEBS Lett; 1993 Nov; 334(1):106-8. PubMed ID: 8224209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascorbate stimulates ferricyanide reduction in HL-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase.
    Van Duijn MM; Van der Zee J; VanSteveninck J; Van den Broek PJ
    J Biol Chem; 1998 May; 273(22):13415-20. PubMed ID: 9593673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox regulation of cAMP levels by ascorbate in 1,25-dihydroxy- vitamin D3-induced differentiation of HL-60 cells.
    López-Lluch G; Burón MI; Alcaín FJ; Quesada JM; Navas P
    Biochem J; 1998 Apr; 331 ( Pt 1)(Pt 1):21-7. PubMed ID: 9512457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ascorbate: ascorbate free radical oxidoreductase from the erythrocyte membrane is not cytochrome b561.
    Van Duijn MM; Buijs JT; Van der Zee J; Van den Broek PJ
    Protoplasma; 2001; 217(1-3):94-100. PubMed ID: 11732344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between ascorbyl free radical and coenzyme Q at the plasma membrane.
    Arroyo A; Navarro F; Gómez-Díaz C; Crane FL; Alcaín FJ; Navas P; Villalba JM
    J Bioenerg Biomembr; 2000 Apr; 32(2):199-210. PubMed ID: 11768753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular ascorbate stabilization as a result of transplasma electron transfer in Saccharomyces cerevisiae.
    Santos-Ocaña C; Navas P; Crane FL; Córdoba F
    J Bioenerg Biomembr; 1995 Dec; 27(6):597-603. PubMed ID: 8746846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The NADH oxidase activity of the plasma membrane of synaptosomes is a major source of superoxide anion and is inhibited by peroxynitrite.
    Martín-Romero FJ; Gutiérrez-Martín Y; Henao F; Gutiérrez-Merino C
    J Neurochem; 2002 Aug; 82(3):604-14. PubMed ID: 12153484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of extracellular ascorbate mediated by coenzyme Q transmembrane electron transport.
    Arroyo A; Rodríguez-Aguilera JC; Santos-Ocaña C; Villalba JM; Navas P
    Methods Enzymol; 2004; 378():207-17. PubMed ID: 15038971
    [No Abstract]   [Full Text] [Related]  

  • 16. Recycling of the ascorbate free radical by human erythrocyte membranes.
    May JM; Qu Z; Cobb CE
    Free Radic Biol Med; 2001 Jul; 31(1):117-24. PubMed ID: 11425497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-surface NAD(P)H-oxidase: relationship to trans-plasma membrane NADH-oxidoreductase and a potential source of circulating NADH-oxidase.
    Berridge MV; Tan AS
    Antioxid Redox Signal; 2000; 2(2):277-88. PubMed ID: 11229532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ascorbate-driven reduction of extracellular ascorbate free radical by the erythrocyte is an electrogenic process.
    VanDuijn MM; Van der Zee J; Van den Broek PJ
    FEBS Lett; 2001 Feb; 491(1-2):67-70. PubMed ID: 11226421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ascorbate recycling by erythrocytes during aging in humans.
    Rizvi SI; Pandey KB; Jha R; Maurya PK
    Rejuvenation Res; 2009 Feb; 12(1):3-6. PubMed ID: 19072252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascorbate free radical reductase and ascorbate redox cycle in the human lens.
    Bando M; Obazawa H
    Jpn J Ophthalmol; 1988; 32(2):176-86. PubMed ID: 3184551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.