These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 7844175)
21. The molecular chaperone Cdc37 is required for Ste11 function and pheromone-induced cell cycle arrest. Abbas-Terki T; Donzé O; Picard D FEBS Lett; 2000 Feb; 467(1):111-6. PubMed ID: 10664467 [TBL] [Abstract][Full Text] [Related]
22. Fus3p and Kss1p control G1 arrest in Saccharomyces cerevisiae through a balance of distinct arrest and proliferative functions that operate in parallel with Far1p. Cherkasova V; Lyons DM; Elion EA Genetics; 1999 Mar; 151(3):989-1004. PubMed ID: 10049917 [TBL] [Abstract][Full Text] [Related]
23. Cln3-associated kinase activity in Saccharomyces cerevisiae is regulated by the mating factor pathway. Jeoung DI; Oehlen LJ; Cross FR Mol Cell Biol; 1998 Jan; 18(1):433-41. PubMed ID: 9418890 [TBL] [Abstract][Full Text] [Related]
24. Overexpression of the G1-cyclin gene CLN2 represses the mating pathway in Saccharomyces cerevisiae at the level of the MEKK Ste11. Wassmann K; Ammerer G J Biol Chem; 1997 May; 272(20):13180-8. PubMed ID: 9148934 [TBL] [Abstract][Full Text] [Related]
25. Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Watanabe Y; Irie K; Matsumoto K Mol Cell Biol; 1995 Oct; 15(10):5740-9. PubMed ID: 7565726 [TBL] [Abstract][Full Text] [Related]
26. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Gartner A; Nasmyth K; Ammerer G Genes Dev; 1992 Jul; 6(7):1280-92. PubMed ID: 1628831 [TBL] [Abstract][Full Text] [Related]
27. The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signaling components. Lee BN; Elion EA Proc Natl Acad Sci U S A; 1999 Oct; 96(22):12679-84. PubMed ID: 10535982 [TBL] [Abstract][Full Text] [Related]
28. MAPK specificity in the yeast pheromone response independent of transcriptional activation. Breitkreutz A; Boucher L; Tyers M Curr Biol; 2001 Aug; 11(16):1266-71. PubMed ID: 11525741 [TBL] [Abstract][Full Text] [Related]
29. Cdc37 is required for association of the protein kinase Cdc28 with G1 and mitotic cyclins. Gerber MR; Farrell A; Deshaies RJ; Herskowitz I; Morgan DO Proc Natl Acad Sci U S A; 1995 May; 92(10):4651-5. PubMed ID: 7753858 [TBL] [Abstract][Full Text] [Related]
30. Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases. Zhou Z; Gartner A; Cade R; Ammerer G; Errede B Mol Cell Biol; 1993 Apr; 13(4):2069-80. PubMed ID: 8455599 [TBL] [Abstract][Full Text] [Related]
31. Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Cook JG; Bardwell L; Kron SJ; Thorner J Genes Dev; 1996 Nov; 10(22):2831-48. PubMed ID: 8918885 [TBL] [Abstract][Full Text] [Related]
32. Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Bellí G; Garí E; Aldea M; Herrero E Mol Microbiol; 2001 Feb; 39(4):1022-35. PubMed ID: 11251821 [TBL] [Abstract][Full Text] [Related]
33. Pheromone-dependent G1 cell cycle arrest requires Far1 phosphorylation, but may not involve inhibition of Cdc28-Cln2 kinase, in vivo. Gartner A; Jovanović A; Jeoung DI; Bourlat S; Cross FR; Ammerer G Mol Cell Biol; 1998 Jul; 18(7):3681-91. PubMed ID: 9632750 [TBL] [Abstract][Full Text] [Related]
34. Loss of sustained Fus3p kinase activity and the G1 arrest response in cells expressing an inappropriate pheromone receptor. Couve A; Hirsch JP Mol Cell Biol; 1996 Aug; 16(8):4478-85. PubMed ID: 8754848 [TBL] [Abstract][Full Text] [Related]
35. Mutational analysis suggests that activation of the yeast pheromone response mitogen-activated protein kinase pathway involves conformational changes in the Ste5 scaffold protein. Sette C; Inouye CJ; Stroschein SL; Iaquinta PJ; Thorner J Mol Biol Cell; 2000 Nov; 11(11):4033-49. PubMed ID: 11071925 [TBL] [Abstract][Full Text] [Related]
36. Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae. Zhan XL; Deschenes RJ; Guan KL Genes Dev; 1997 Jul; 11(13):1690-702. PubMed ID: 9224718 [TBL] [Abstract][Full Text] [Related]
37. Characterization of Fus3 localization: active Fus3 localizes in complexes of varying size and specific activity. Choi KY; Kranz JE; Mahanty SK; Park KS; Elion EA Mol Biol Cell; 1999 May; 10(5):1553-68. PubMed ID: 10233162 [TBL] [Abstract][Full Text] [Related]
38. Identification and characterization of a mutation affecting the division arrest signaling of the pheromone response pathway in Saccharomyces cerevisiae. Fujimura H Genetics; 1990 Feb; 124(2):275-82. PubMed ID: 2407613 [TBL] [Abstract][Full Text] [Related]
39. Saccharomyces cerevisiae Mpt5p interacts with Sst2p and plays roles in pheromone sensitivity and recovery from pheromone arrest. Chen T; Kurjan J Mol Cell Biol; 1997 Jun; 17(6):3429-39. PubMed ID: 9154842 [TBL] [Abstract][Full Text] [Related]
40. Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae. Dirick L; Böhm T; Nasmyth K EMBO J; 1995 Oct; 14(19):4803-13. PubMed ID: 7588610 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]