These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 7844258)
1. Dynamics of retinotectal synaptogenesis in normal and 3-eyed frogs: evidence for the postsynaptic regulation of synapse number. Norden JJ; Constantine-Paton M J Comp Neurol; 1994 Oct; 348(3):461-79. PubMed ID: 7844258 [TBL] [Abstract][Full Text] [Related]
2. Ultrastructural evidence of the formation of synapses by retinal ganglion cell axons in two nonstandard targets. Cantore WA; Scalia F J Comp Neurol; 1987 Jul; 261(1):137-47. PubMed ID: 3497955 [TBL] [Abstract][Full Text] [Related]
3. Pre- and postsynaptic correlates of interocular competition and segregation in the frog. Constantine-Paton M; Ferrari-Eastman P J Comp Neurol; 1987 Jan; 255(2):178-95. PubMed ID: 3493268 [TBL] [Abstract][Full Text] [Related]
4. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening. Schmidt JT; Fleming MR; Leu B J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146 [TBL] [Abstract][Full Text] [Related]
5. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog. II. Cell survival and functional recovery after optic nerve transection. Singman EL; Scalia F J Comp Neurol; 1991 May; 307(3):351-69. PubMed ID: 1856327 [TBL] [Abstract][Full Text] [Related]
6. The relationship between retinal and tectal growth in larval Xenopus: implications for the development of the retino-tectal projection. Gaze RM; Keating MJ; Ostberg A; Chung SH J Embryol Exp Morphol; 1979 Oct; 53():103-43. PubMed ID: 536683 [TBL] [Abstract][Full Text] [Related]
7. Growth cone-target interactions in the frog retinotectal pathway. Reh TA; Constantine-Paton M J Neurosci Res; 1985; 13(1-2):89-100. PubMed ID: 2983078 [TBL] [Abstract][Full Text] [Related]
8. Topographic and morphometric effects of bilateral embryonic eye removal on the optic tectum and nucleus isthmus of the leopard frog. Constantine-Paton M; Ferrari-Eastman P J Comp Neurol; 1981 Mar; 196(4):645-61. PubMed ID: 6970759 [TBL] [Abstract][Full Text] [Related]
9. Anatomical mapping of retino-tectal connections in developing and metamorphosed Xenopus: evidence for changing connections. Longley A J Embryol Exp Morphol; 1978 Jun; 45():249-70. PubMed ID: 670862 [TBL] [Abstract][Full Text] [Related]
10. Regulation of retinal ganglion cell axon arbor size by target availability: mechanisms of compression and expansion of the retinotectal projection. Xiong M; Pallas SL; Lim S; Finlay BL J Comp Neurol; 1994 Jun; 344(4):581-97. PubMed ID: 7929893 [TBL] [Abstract][Full Text] [Related]
11. Evidence for centripetally shifting terminals on the tectum of postmetamorphic Rana pipiens. Hitchcock PF; Easter SS J Comp Neurol; 1987 Dec; 266(4):556-64. PubMed ID: 3501793 [TBL] [Abstract][Full Text] [Related]
12. Changes in synaptic density after developmental compression or expansion of retinal input to the superior colliculus. Xiong M; Finlay BL J Comp Neurol; 1993 Apr; 330(4):455-63. PubMed ID: 8320337 [TBL] [Abstract][Full Text] [Related]
13. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity. Marshak S; Nikolakopoulou AM; Dirks R; Martens GJ; Cohen-Cory S J Neurosci; 2007 Mar; 27(10):2444-56. PubMed ID: 17344382 [TBL] [Abstract][Full Text] [Related]
14. A Golgi-electron microscopic study of goldfish optic tectum. II. Quantitative aspects of synaptic organization. Meek J J Comp Neurol; 1981 Jun; 199(2):175-90. PubMed ID: 7251938 [TBL] [Abstract][Full Text] [Related]
15. On the formation of eye dominance stripes and patches in the doubly-innervated optic tectum of the chick. Fawcett JW; Cowan WM Brain Res; 1985 Jan; 349(1-2):147-63. PubMed ID: 3986583 [TBL] [Abstract][Full Text] [Related]
16. Fine-structural alterations and clustering of developing synapses after chronic treatments with low levels of NMDA. Yen LH; Sibley JT; Constantine-Paton M J Neurosci; 1993 Nov; 13(11):4949-60. PubMed ID: 8229207 [TBL] [Abstract][Full Text] [Related]
17. Target regulation of synaptic number in the compressed retinotectal projection of goldfish. Murray M; Sharma S; Edwards MA J Comp Neurol; 1982 Aug; 209(4):374-85. PubMed ID: 7130464 [TBL] [Abstract][Full Text] [Related]
18. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum. Niell CM; Smith SJ Neuron; 2005 Mar; 45(6):941-51. PubMed ID: 15797554 [TBL] [Abstract][Full Text] [Related]
19. Presynaptic neurotrophin-3 increases the number of tectal synapses, vesicle density, and number of docked vesicles in chick embryos. Wang X; Butowt R; von Bartheld CS J Comp Neurol; 2003 Mar; 458(1):62-77. PubMed ID: 12577323 [TBL] [Abstract][Full Text] [Related]