These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7844636)

  • 1. Specificity of riboflavin molecular groups for riboflavin binding to rat small intestinal brush border membrane.
    Casirola D; Kasai S; Gastaldi G; Ferrari G; Matsui K
    J Nutr Sci Vitaminol (Tokyo); 1994 Aug; 40(4):289-301. PubMed ID: 7844636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Riboflavin uptake by rat small intestinal brush border membrane vesicles: a dual mechanism involving specific membrane binding.
    Casirola D; Gastaldi G; Ferrari G; Kasai S; Rindi G
    J Membr Biol; 1993 Sep; 135(3):217-23. PubMed ID: 8271261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of riboflavin in human intestinal brush border membrane vesicles.
    Said HM; Arianas P
    Gastroenterology; 1991 Jan; 100(1):82-8. PubMed ID: 1983852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification, properties, and function of flavokinase from rat intestinal mucosa.
    Kasai S; Nakano H; Maeda K; Matsui K
    J Biochem; 1990 Feb; 107(2):298-303. PubMed ID: 2163401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy depletion differently affects membrane transport and intracellular metabolism of riboflavin taken up by isolated rat enterocytes.
    Gastaldi G; Laforenza U; Casirola D; Ferrari G; Tosco M; Rindi G
    J Nutr; 1999 Feb; 129(2):406-9. PubMed ID: 10024619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium-dependent transport of riboflavin in brush border membrane vesicles of rat small intestine is an electrogenic process.
    Daniel H; Rehner GI
    J Nutr; 1992 Jul; 122(7):1454-61. PubMed ID: 1619472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron uptake from transferrin and lactoferrin by rat intestinal brush-border membrane vesicles.
    Kawakami H; Dosako S; Lönnerdal B
    Am J Physiol; 1990 Apr; 258(4 Pt 1):G535-41. PubMed ID: 2333967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal absorption of riboflavin, studied by an in situ circulation system using radioactive analogues.
    Kasai S; Nakano H; Kinoshita T; Miyake Y; Maeda K; Matsui K
    J Nutr Sci Vitaminol (Tokyo); 1988 Jun; 34(3):265-80. PubMed ID: 3183777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium uptake by intestinal brush border membrane vesicles. Comparison with in vivo calcium transport.
    Schedl HP; Wilson HD
    J Clin Invest; 1985 Nov; 76(5):1871-8. PubMed ID: 2997294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic alcohol feeding inhibits physiological and molecular parameters of intestinal and renal riboflavin transport.
    Subramanian VS; Subramanya SB; Ghosal A; Said HM
    Am J Physiol Cell Physiol; 2013 Sep; 305(5):C539-46. PubMed ID: 23804199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Riboflavin transport by rabbit renal brush border membrane vesicles.
    Yanagawa N; Jo OD; Said HM
    Biochim Biophys Acta; 1997 Dec; 1330(2):172-8. PubMed ID: 9408170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of methylchlorpromazine by brush-border membrane vesicles from rat small intestine.
    Saitoh H; Miyazaki K
    Biol Pharm Bull; 1997 Jun; 20(6):662-6. PubMed ID: 9212986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of thiamine by brush-border membrane vesicles from rat small intestine.
    Casirola D; Ferrari G; Gastaldi G; Patrini C; Rindi G
    J Physiol; 1988 Apr; 398():329-39. PubMed ID: 3392675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urinary lumichrome-level catabolites of riboflavin are due to microbial and photochemical events and not rat tissue enzymatic cleavage of the ribityl chain.
    Oka M; McCormick DB
    J Nutr; 1985 Apr; 115(4):496-9. PubMed ID: 3981268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport functions of riboflavin carriers in the rat small intestine and colon: site difference and effects of tricyclic-type drugs.
    Tomei S; Yuasa H; Inoue K; Watanabe J
    Drug Deliv; 2001; 8(3):119-24. PubMed ID: 11570591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of riboflavin by intestinal basolateral membrane vesicles: a specialized carrier-mediated process.
    Said HM; Hollander D; Mohammadkhani R
    Biochim Biophys Acta; 1993 Jun; 1148(2):263-8. PubMed ID: 8504119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake of riboflavin by rat intestinal mucosa in vitro.
    Middleton HM
    J Nutr; 1990 Jun; 120(6):588-93. PubMed ID: 2352033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of nicotinamide adenine dinucleotide by the renal brush border membrane from rat kidney cortex.
    Braun-Werness JL; Jackson BA; Werness PG; Dousa TP
    Biochim Biophys Acta; 1983 Aug; 732(3):553-61. PubMed ID: 6871215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of Schizosaccharomyces pombe riboflavin kinase reveals a novel ATP and riboflavin-binding fold.
    Bauer S; Kemter K; Bacher A; Huber R; Fischer M; Steinbacher S
    J Mol Biol; 2003 Mar; 326(5):1463-73. PubMed ID: 12595258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folate transport in enterocytes and brush-border-membrane vesicles isolated from the small intestine of the neonatal goat.
    Blakeborough P; Salter DN
    Br J Nutr; 1988 May; 59(3):485-95. PubMed ID: 3395608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.