These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 7844833)
21. Direct use of unassigned resonances in NMR structure calculations with proxy residues. AB E; Pugh DJ; Kaptein R; Boelens R; Bonvin AM J Am Chem Soc; 2006 Jun; 128(23):7566-71. PubMed ID: 16756312 [TBL] [Abstract][Full Text] [Related]
22. Solution structures of the R6 human insulin hexamer, Chang X; Jorgensen AM; Bardrum P; Led JJ Biochemistry; 1997 Aug; 36(31):9409-22. PubMed ID: 9235985 [TBL] [Abstract][Full Text] [Related]
23. Semiautomatic sequence-specific assignment of proteins based on the tertiary structure--the program st2nmr. Pristovsek P; Rüterjans H; Jerala R J Comput Chem; 2002 Feb; 23(3):335-40. PubMed ID: 11908496 [TBL] [Abstract][Full Text] [Related]
24. Application of distance geometry to the proton assignment problem. Oshiro CM; Kuntz ID Biopolymers; 1993 Jan; 33(1):107-15. PubMed ID: 8381306 [TBL] [Abstract][Full Text] [Related]
25. The fumarate sensor DcuS: progress in rapid protein fold elucidation by combining protein structure prediction methods with NMR spectroscopy. Meiler J; Baker D J Magn Reson; 2005 Apr; 173(2):310-6. PubMed ID: 15780923 [TBL] [Abstract][Full Text] [Related]
26. 1H NMR assignment and global fold of napin BnIb, a representative 2S albumin seed protein. Rico M; Bruix M; González C; Monsalve RI; Rodríguez R Biochemistry; 1996 Dec; 35(49):15672-82. PubMed ID: 8961930 [TBL] [Abstract][Full Text] [Related]
27. Solution structure of carbonmonoxy myoglobin determined from nuclear magnetic resonance distance and chemical shift constraints. Osapay K; Theriault Y; Wright PE; Case DA J Mol Biol; 1994 Nov; 244(2):183-97. PubMed ID: 7966330 [TBL] [Abstract][Full Text] [Related]
28. Relaxation data in NMR structure determination: model calculations for the lysozyme-Gd3+ complex. Sutcliffe MJ; Dobson CM Proteins; 1991; 10(2):117-29. PubMed ID: 1896425 [TBL] [Abstract][Full Text] [Related]
30. The solution structure of the Tyr41-->His mutant of the single-stranded DNA binding protein encoded by gene V of the filamentous bacteriophage M13. Folkers PJ; Nilges M; Folmer RH; Konings RN; Hilbers CW J Mol Biol; 1994 Feb; 236(1):229-46. PubMed ID: 8107108 [TBL] [Abstract][Full Text] [Related]
31. Nuclear magnetic resonance solution structure of the Arc repressor using relaxation matrix calculations. Bonvin AM; Vis H; Breg JN; Burgering MJ; Boelens R; Kaptein R J Mol Biol; 1994 Feb; 236(1):328-41. PubMed ID: 8107113 [TBL] [Abstract][Full Text] [Related]
32. NMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance assignments for wild-type and [C65S, C72S] mutant forms. Shimotakahara S; Rios CB; Laity JH; Zimmerman DE; Scheraga HA; Montelione GT Biochemistry; 1997 Jun; 36(23):6915-29. PubMed ID: 9188686 [TBL] [Abstract][Full Text] [Related]
33. Stereospecific assignments of protein NMR resonances based on the tertiary structure and 2D/3D NOE data. Pristovsek P; Franzoni L J Comput Chem; 2006 Apr; 27(6):791-7. PubMed ID: 16526035 [TBL] [Abstract][Full Text] [Related]
34. Automated protein structure determination from NMR spectra. López-Méndez B; Güntert P J Am Chem Soc; 2006 Oct; 128(40):13112-22. PubMed ID: 17017791 [TBL] [Abstract][Full Text] [Related]
35. Determination of three-dimensional protein structures from nuclear magnetic resonance data using fragments of known structures. Kraulis PJ; Jones TA Proteins; 1987; 2(3):188-201. PubMed ID: 3447178 [TBL] [Abstract][Full Text] [Related]
36. Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Gardner KH; Rosen MK; Kay LE Biochemistry; 1997 Feb; 36(6):1389-401. PubMed ID: 9063887 [TBL] [Abstract][Full Text] [Related]
37. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. Herrmann T; Güntert P; Wüthrich K J Mol Biol; 2002 May; 319(1):209-27. PubMed ID: 12051947 [TBL] [Abstract][Full Text] [Related]
38. Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein. Massiah MA; Starich MR; Paschall C; Summers MF; Christensen AM; Sundquist WI J Mol Biol; 1994 Nov; 244(2):198-223. PubMed ID: 7966331 [TBL] [Abstract][Full Text] [Related]
39. New features and enhancements in the X-PLOR computer program. Badger J; Kumar RA; Yip P; Szalma S Proteins; 1999 Apr; 35(1):25-33. PubMed ID: 10090283 [TBL] [Abstract][Full Text] [Related]
40. Protein-ligand NOE matching: a high-throughput method for binding pose evaluation that does not require protein NMR resonance assignments. Constantine KL; Davis ME; Metzler WJ; Mueller L; Claus BL J Am Chem Soc; 2006 Jun; 128(22):7252-63. PubMed ID: 16734479 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]