These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7845063)

  • 1. Thermal method for continuous measurement of cerebral perfusion.
    Wei D; Saidel GM; Jones SC
    Med Biol Eng Comput; 1994 Sep; 32(5):481-8. PubMed ID: 7845063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of continuous thermal measurement of cerebral blood flow by arterial pressure change.
    Wei D; Shea M; Saidel GM; Jones SC
    J Cereb Blood Flow Metab; 1993 Jul; 13(4):693-701. PubMed ID: 8314922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data.
    Depreitere B; Güiza F; Van den Berghe G; Schuhmann MU; Maier G; Piper I; Meyfroidt G
    J Neurosurg; 2014 Jun; 120(6):1451-7. PubMed ID: 24745709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of cerebral blood flow from thermal measurement.
    Wei D; Saidel GM; Jones SC
    J Biomech Eng; 1995 Feb; 117(1):74-85. PubMed ID: 7609488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of early and late intravenous norepinephrine infusion on cerebral perfusion, microcirculation, brain-tissue oxygenation, and edema formation in brain-injured rats.
    Kroppenstedt SN; Thomale UW; Griebenow M; Sakowitz OW; Schaser KD; Mayr PS; Unterberg AW; Stover JF
    Crit Care Med; 2003 Aug; 31(8):2211-21. PubMed ID: 12973182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous monitoring of cerebral perfusion by thermal clearance.
    Voorhees WD; DeFord JA; Bleyer MW; Marchosky JA; Moran CJ
    Neurol Res; 1993 Apr; 15(2):75-82. PubMed ID: 8099212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability in the magnitude of the cerebral blood flow response and the shape of the cerebral blood flow-pressure autoregulation curve during hypotension in normal rats [corrected].
    Jones SC; Radinsky CR; Furlan AJ; Chyatte D; Qu Y; Easley KA; Perez-Trepichio AD
    Anesthesiology; 2002 Aug; 97(2):488-96. PubMed ID: 12151941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury.
    Rosenthal G; Sanchez-Mejia RO; Phan N; Hemphill JC; Martin C; Manley GT
    J Neurosurg; 2011 Jan; 114(1):62-70. PubMed ID: 20707619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly accurate thermal flow microsensor for continuous and quantitative measurement of cerebral blood flow.
    Li C; Wu PM; Wu Z; Limnuson K; Mehan N; Mozayan C; Golanov EV; Ahn CH; Hartings JA; Narayan RK
    Biomed Microdevices; 2015 Oct; 17(5):87. PubMed ID: 26256480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous cerebral autoregulation monitoring by cross-correlation analysis.
    Steinmeier R; Hofmann RP; Bauhuf C; Hübner U; Fahlbusch R
    J Neurotrauma; 2002 Oct; 19(10):1127-38. PubMed ID: 12427323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous monitoring of cortical perfusion by laser Doppler flowmetry in ventilated patients with head injury.
    Kirkpatrick PJ; Smielewski P; Czosnyka M; Pickard JD
    J Neurol Neurosurg Psychiatry; 1994 Nov; 57(11):1382-8. PubMed ID: 7964816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A venous outflow method for measurement of rapid changes of the cerebral blood flow and oxygen consumption in the rat.
    Nilsson B; Siesjö BK
    Stroke; 1983; 14(5):797-802. PubMed ID: 6658967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous and real-time blood perfusion monitoring in prefabricated flaps.
    Maitz PK; Khot MB; Mayer HF; Martin GT; Pribaz JJ; Bowman HF; Orgill DP
    J Reconstr Microsurg; 2004 Jan; 20(1):35-41. PubMed ID: 14973774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Measuring cerebral vasoregulation--the possible clinical implications].
    van der Harst JJ; Aries MJ; Vroomen PC; Kremer B; Elting JW
    Ned Tijdschr Geneeskd; 2013; 157(6):A5239. PubMed ID: 23388137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral perfusion during major cardiac surgery in children.
    Lundar T; Lindberg H; Lindegaard KF; Tjønneland S; Rian R; Bø G; Nornes H
    Pediatr Cardiol; 1987; 8(3):161-5. PubMed ID: 2963264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study of cerebral autoregulation during cardiopulmonary bypass with or without pulsatile perfusion.
    Sadahiro M; Haneda K; Mohri H
    J Thorac Cardiovasc Surg; 1994 Sep; 108(3):446-54. PubMed ID: 8078337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral autoregulation during deep hypothermic nonpulsatile cardiopulmonary bypass with selective cerebral perfusion in dogs.
    Tanaka J; Shiki K; Asou T; Yasui H; Tokunaga K
    J Thorac Cardiovasc Surg; 1988 Jan; 95(1):124-32. PubMed ID: 3336226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal design of a thermistor probe for surface measurement of cerebral blood flow.
    Wei DT; Saidel GM; Jones SC
    IEEE Trans Biomed Eng; 1990 Dec; 37(12):1159-72. PubMed ID: 2289790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the in vivo recording of local cerebral blood flow using a thermistor device.
    Coremans J; Vermariën H; Vereecke F; Bourgain RH
    Adv Exp Med Biol; 1985; 191():139-48. PubMed ID: 3938598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical blood flow autoregulation revisited using laser Doppler perfusion imaging.
    Kimme P; Ledin T; Sjöberg F
    Acta Physiol Scand; 2002 Dec; 176(4):255-62. PubMed ID: 12444930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.