BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7845327)

  • 1. Lead exposure potentiates the effects of NMDA on repeated learning.
    Cohn J; Cory-Slechta DA
    Neurotoxicol Teratol; 1994; 16(5):455-65. PubMed ID: 7845327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subsensitivity of lead-exposed rats to the accuracy-impairing and rate-altering effects of MK-801 on a multiple schedule of repeated learning and performance.
    Cohn J; Cory-Slechta DA
    Brain Res; 1993 Jan; 600(2):208-18. PubMed ID: 8435747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of lead exposure on learning in a multiple repeated acquisition and performance schedule.
    Cohn J; Cox C; Cory-Slechta DA
    Neurotoxicology; 1993; 14(2-3):329-46. PubMed ID: 8247407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lead-induced changes in NMDA receptor complex binding: correlations with learning accuracy and with sensitivity to learning impairments caused by MK-801 and NMDA administration.
    Cory-Slechta DA; Garcia-Osuna M; Greenamyre JT
    Behav Brain Res; 1997 May; 85(2):161-74. PubMed ID: 9105573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the role of dopaminergic systems in lead-induced learning impairments using a repeated acquisition and performance baseline.
    Cohn J; Cory-Slechta DA
    Neurotoxicology; 1994; 15(4):913-26. PubMed ID: 7715862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate and dopamine in nucleus accumbens core and shell: sequence learning versus performance.
    Bauter MR; Brockel BJ; Pankevich DE; Virgolini MB; Cory-Slechta DA
    Neurotoxicology; 2003 Mar; 24(2):227-43. PubMed ID: 12606295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of dopamine agonists on fixed interval schedule-controlled behavior are selectively altered by low-level lead exposure.
    Cory-Slechta DA; Pokora MJ; Preston RA
    Neurotoxicol Teratol; 1996; 18(5):565-75. PubMed ID: 8888021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The serotonin 5-HT2A receptors antagonist M100907 prevents impairment in attentional performance by NMDA receptor blockade in the rat prefrontal cortex.
    Mirjana C; Baviera M; Invernizzi RW; Balducci C
    Neuropsychopharmacology; 2004 Sep; 29(9):1637-47. PubMed ID: 15127084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MK-801 subsensitivity following postweaning lead exposure.
    Cory-Slechta DA
    Neurotoxicology; 1995; 16(1):83-95. PubMed ID: 7603648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postweaning lead exposure enhances the stimulus properties of N-methyl-D-aspartate: possible dopaminergic involvement?
    Cory-Slechta DA; Pokora MJ; Johnson JL
    Neurotoxicology; 1996; 17(2):509-21. PubMed ID: 8856745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postnatal lead exposure and MK-801 sensitivity.
    Cory-Slechta DA
    Neurotoxicology; 1997; 18(1):209-20. PubMed ID: 9216003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chronic lead exposure on learning and reaction time in a visual discrimination task.
    Morgan RE; Levitsky DA; Strupp BJ
    Neurotoxicol Teratol; 2000; 22(3):337-45. PubMed ID: 10840177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low level lead exposure increases sensitivity to the stimulus properties of dopamine D1 and D2 agonists.
    Cory-Slechta DA; Widzowski DV
    Brain Res; 1991 Jul; 553(1):65-74. PubMed ID: 1681979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated diazepam administration: effects on the acquisition and performance of response chains in humans.
    Bickel WK; Higgins ST; Griffiths RR
    J Exp Anal Behav; 1989 Jul; 52(1):47-56. PubMed ID: 2671245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental lead (Pb) exposure reduces the ability of the NMDA antagonist MK-801 to suppress long-term potentiation (LTP) in the rat dentate gyrus, in vivo.
    Gilbert ME; Lasley SM
    Neurotoxicol Teratol; 2007; 29(3):385-93. PubMed ID: 17350801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of NMDA, a potent agonist of glutamate receptor, on behavioral activity of rats with experimental hyperammonemia evoked by liver failure.
    Fedosiewicz-Wasiluk M; Hoły ZZ; Wiśniewska RJ; Wiśniewski K
    Amino Acids; 2005 Feb; 28(1):111-7. PubMed ID: 15700110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of MK-801, NMDA and scopolamine on rats learning a four-member repeated acquisition paradigm.
    Cohn J; Cory-Slechta DA
    Behav Pharmacol; 1992 Aug; 3(4):403-413. PubMed ID: 11224143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycine and calcium-dependent effects of lead on N-methyl-D-aspartate receptor function in rat hippocampal neurons.
    Marchioro M; Swanson KL; Aracava Y; Albuquerque EX
    J Pharmacol Exp Ther; 1996 Oct; 279(1):143-53. PubMed ID: 8858987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning versus performance impairments following regional administration of MK-801 into nucleus accumbens and dorsomedial striatum.
    Cory-Slechta DA; O'Mara DJ; Brockel BJ
    Behav Brain Res; 1999 Jul; 102(1-2):181-94. PubMed ID: 10403026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-dependent effects of developmental lead exposure on performance in the Morris water maze.
    Jett DA; Kuhlmann AC; Farmer SJ; Guilarte TR
    Pharmacol Biochem Behav; 1997; 57(1-2):271-9. PubMed ID: 9164582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.