These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 7845373)

  • 1. Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron.
    Reddy AC; Lokesh BR
    Mol Cell Biochem; 1994 Aug; 137(1):1-8. PubMed ID: 7845373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of xanthine oxidase-xanthine-iron mediated lipid peroxidation by eugenol in liposomes.
    Nagababu E; Lakshmaiah N
    Mol Cell Biochem; 1997 Jan; 166(1-2):65-71. PubMed ID: 9046022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of the iron-catalysed formation of hydroxyl radicals by nitrosouracil derivatives: protection of mitochondrial membranes against lipid peroxidation.
    Rabion A; Verlhac JB; Fraisse L; Roche B; Seris JL
    Free Radic Res Commun; 1993; 19(6):409-23. PubMed ID: 8168730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effect of eugenol on non-enzymatic lipid peroxidation in rat liver mitochondria.
    Nagababu E; Lakshmaiah N
    Biochem Pharmacol; 1992 Jun; 43(11):2393-400. PubMed ID: 1319160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH.: comparison with the Haber-Weiss reaction.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1986 Jan; 244(1):27-34. PubMed ID: 3004338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of roxithromycin on the generation of reactive oxygen species in vitro.
    Akamatsu H; Nishijima S; Akamatsu M; Kurokawa I; Sasaki H; Asada Y
    J Int Med Res; 1996; 24(1):27-32. PubMed ID: 8674797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scavenging of superoxide anions by spice principles.
    Krishnakantha TP; Lokesh BR
    Indian J Biochem Biophys; 1993 Apr; 30(2):133-4. PubMed ID: 8394839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of curcumin and eugenol on iron-induced hepatic toxicity in rats.
    Reddy AC; Lokesh BR
    Toxicology; 1996 Jan; 107(1):39-45. PubMed ID: 8597030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes.
    Reddy AC; Lokesh BR
    Mol Cell Biochem; 1992 Apr; 111(1-2):117-24. PubMed ID: 1588934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for superoxide-dependent reduction of Fe3+ and its role in enzyme-generated hydroxyl radical formation.
    Fong KL; McCay PB; Poyer JL
    Chem Biol Interact; 1976 Sep; 15(1):77-89. PubMed ID: 183903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of a series of coumarins with reactive oxygen species. Scavenging of superoxide, hypochlorous acid and hydroxyl radicals.
    Payá M; Halliwell B; Hoult JR
    Biochem Pharmacol; 1992 Jul; 44(2):205-14. PubMed ID: 1322662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of rat liver microsomal lipid peroxidation by boldine.
    Cederbaum AI; Kukiełka E; Speisky H
    Biochem Pharmacol; 1992 Nov; 44(9):1765-72. PubMed ID: 1333206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tempace and troxyl-novel synthesized 2,2,6,6-tetramethylpiperidine derivatives as antioxidants and radioprotectors.
    Metodiewa D; Skolimowski J; Karolczak S
    Biochem Mol Biol Int; 1996 Dec; 40(6):1211-9. PubMed ID: 8988333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox cycling of potential antitumor aziridinyl quinones.
    Lusthof KJ; de Mol NJ; Richter W; Janssen LH; Butler J; Hoey BM; Verboom W; Reinhoudt DN
    Free Radic Biol Med; 1992 Dec; 13(6):599-608. PubMed ID: 1334033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM; Grover TA; Nayini N; Aust SD
    Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of reduced glutathione with active oxygen species generated by xanthine-oxidase-catalyzed metabolism of xanthine.
    Ross D; Cotgreave I; Moldéus P
    Biochim Biophys Acta; 1985 Sep; 841(3):278-82. PubMed ID: 2992602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of oxatomide on neutrophil oxygen radical generation.
    Akamatsu H; Miyachi Y; Asada Y; Niwa Y
    Biol Pharm Bull; 1993 Jun; 16(6):568-70. PubMed ID: 8103395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vanadate-mediated hydroxyl radical generation from superoxide radical in the presence of NADH: Haber-Weiss vs Fenton mechanism.
    Shi X; Dalal NS
    Arch Biochem Biophys; 1993 Dec; 307(2):336-41. PubMed ID: 8274019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the superoxide and hydroxyl radicals in the degradation of DNA and deoxyribose induced by a copper-phenanthroline complex.
    Gutteridge JM; Halliwell B
    Biochem Pharmacol; 1982 Sep; 31(17):2801-5. PubMed ID: 6291545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.