These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
402 related articles for article (PubMed ID: 7845700)
1. Effects of colour adaptation and stimulus size on the detection of chromatic deviations from achromatic as a function of eccentricity in man. Iivanainen A; Rovamo J Ophthalmic Physiol Opt; 1994 Oct; 14(4):408-12. PubMed ID: 7845700 [TBL] [Abstract][Full Text] [Related]
2. The effects of colour adaptation and stimulus size on white perception as a function of eccentricity in man. Iivanainen A; Rovamo J Vision Res; 1992 Jun; 32(6):1131-5. PubMed ID: 1509703 [TBL] [Abstract][Full Text] [Related]
3. Detection of blue under chromatic adaptation: the effects of stimulus size and eccentricity. Iivanainen A; Rovamo J Vision Res; 1995 Mar; 35(5):589-90. PubMed ID: 7900298 [TBL] [Abstract][Full Text] [Related]
4. Detection of chromatic deviations from white across the human visual field. Rovamo J; Iivanainen A Vision Res; 1991; 31(12):2227-34. PubMed ID: 1771802 [TBL] [Abstract][Full Text] [Related]
5. Perception of green and red under chromatic adaptation: the effects of stimulus size and eccentricity. Rovamo J; Iivanainen A Optom Vis Sci; 1994 Aug; 71(8):492-501. PubMed ID: 7970565 [TBL] [Abstract][Full Text] [Related]
6. Functional characteristics of blue-on-yellow perimetric thresholds in glaucoma. Felius J; de Jong LA; van den Berg TJ; Greve EL Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1665-74. PubMed ID: 7601646 [TBL] [Abstract][Full Text] [Related]
8. Adaptation mechanisms, eccentricity profiles, and clinical implementation of red-on-white perimetry. Zele AJ; Dang TM; O'Loughlin RK; Guymer RH; Harper A; Vingrys AJ Optom Vis Sci; 2008 May; 85(5):309-17. PubMed ID: 18451735 [TBL] [Abstract][Full Text] [Related]
9. Contrasting blue-on-yellow with white-on-white visual fields: Roles of visual adaptation for healthy peri- or postmenopausal women younger than 70 years of age. Eisner A; Toomey MD; Incognito LJ; O'malley JP; Samples JR Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5605-14. PubMed ID: 17122155 [TBL] [Abstract][Full Text] [Related]
10. Chromatic and luminance losses with multiple sclerosis and optic neuritis measured using dynamic random luminance contrast noise. Flanagan P; Zele AJ Ophthalmic Physiol Opt; 2004 May; 24(3):225-33. PubMed ID: 15130171 [TBL] [Abstract][Full Text] [Related]
11. Dissociation of hemispheric exploitation of rods and cones for simple detection. Braun CM; Achim A; Charron JF; Côté A Am J Psychol; 1998; 111(2):241-63. PubMed ID: 9664649 [TBL] [Abstract][Full Text] [Related]
12. Color perception in the intermediate periphery of the visual field. Hansen T; Pracejus L; Gegenfurtner KR J Vis; 2009 Apr; 9(4):26.1-12. PubMed ID: 19757935 [TBL] [Abstract][Full Text] [Related]
13. Effect of chromatic mechanisms on the detection of mesopic incremental targets at different eccentricities. Bodrogi P; Vas Z; Haferkemper N; Várady G; Schiller C; Khanh TQ; Schanda J Ophthalmic Physiol Opt; 2010 Jan; 30(1):85-94. PubMed ID: 20444113 [TBL] [Abstract][Full Text] [Related]
14. Color scaling of discs and natural objects at different luminance levels. Hansen T; Gegenfurtner KR Vis Neurosci; 2006; 23(3-4):603-10. PubMed ID: 16962003 [TBL] [Abstract][Full Text] [Related]
15. Effect of stimulus intensity on the sizes of chromatic perceptive fields. Troup LJ; Pitts MA; Volbrecht VJ; Nerger JL J Opt Soc Am A Opt Image Sci Vis; 2005 Oct; 22(10):2137-42. PubMed ID: 16277283 [TBL] [Abstract][Full Text] [Related]
16. Red-green and yellow-blue opponent-color responses as a function of retinal eccentricity. Hibino H Vision Res; 1992 Oct; 32(10):1955-64. PubMed ID: 1287992 [TBL] [Abstract][Full Text] [Related]