BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7847139)

  • 1. Effects of increased intracranial pressure in brain surface microcirculation in rats.
    Kawamura S; Yasui N
    Acta Neurochir (Wien); 1994; 128(1-4):21-5. PubMed ID: 7847139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo effects of the Ca2+ entry blocker nilvadipine on brain surface microvessels in rats.
    Kawamura S; Yasui N
    Neurol Med Chir (Tokyo); 1994 Oct; 34(10):663-7. PubMed ID: 7529366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved closed cranial window technique for investigation of blood-brain barrier function and cerebral vasomotor control in the rat.
    Kawamura S; Schürer L; Goetz A; Kempski O; Schmucker B; Baethmann A
    Int J Microcirc Clin Exp; 1990 Nov; 9(4):369-83. PubMed ID: 2279856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of intracranial pressure on the pial microcirculation in rats studied by a fiber-optic laser-Doppler anemometer microscope.
    Seki J; Sasaki Y; Oyama T; Yamamoto J
    Front Med Biol Eng; 1999; 9(2):113-21. PubMed ID: 10450498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximal flow pulsation in the pial arterioles of rats at increased intracranial pressure.
    Seki J; Sasaki Y; Oyama T; Yamamoto J
    Front Med Biol Eng; 2000; 10(1):59-66. PubMed ID: 10898476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular response to hyperoxemia in rat brain surface microvessels.
    Kawamura S; Yasui N
    Neurol Med Chir (Tokyo); 1996 Mar; 36(3):156-61. PubMed ID: 8869151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of 30% and 60% xenon inhalation on pial vessel diameter and intracranial pressure in rabbits.
    Fukuda T; Nakayama H; Yanagi K; Mizutani T; Miyabe M; Ohshima N; Toyooka H
    Anesth Analg; 2001 May; 92(5):1245-50. PubMed ID: 11323354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of the blood-brain barrier function and vasomotor response in rat microcirculation using intravital fluorescence microscopy.
    Kawamura S; Yasui N
    Exp Neurol; 1992 Sep; 117(3):247-53. PubMed ID: 1397160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced Dynamic Intracranial Pressure and Cerebrovascular Reactivity Assessment of Cerebrovascular Autoregulation After Traumatic Brain Injury with High Intracranial Pressure in Rats.
    Bragin DE; Statom GL; Nemoto EM
    Acta Neurochir Suppl; 2018; 126():309-312. PubMed ID: 29492580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A study of pial vessel behavior on superior sagittal sinus and cortical venous occlusion].
    Tsujimoto S; Sakaki T; Morimoto T
    No To Shinkei; 1990 Dec; 42(12):1185-90. PubMed ID: 2083134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice.
    Schwarzmaier SM; Kim SW; Trabold R; Plesnila N
    J Neurotrauma; 2010 Jan; 27(1):121-30. PubMed ID: 19803784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early white blood cell dynamics after traumatic brain injury: effects on the cerebral microcirculation.
    Härtl R; Medary MB; Ruge M; Arfors KE; Ghajar J
    J Cereb Blood Flow Metab; 1997 Nov; 17(11):1210-20. PubMed ID: 9390653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of pentobarbital on intracerebral arterioles and venules of rats in vitro.
    Ogura K; Takayasu M; Dacey RG
    Neurosurgery; 1991 Apr; 28(4):537-41. PubMed ID: 2034348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dobutamine on brain surface microvessels in rats.
    Kawamura S; Yasui N
    Neurol Med Chir (Tokyo); 1998 Mar; 38(3):137-41; discussion 141-2. PubMed ID: 9597856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pial arteriolar vessel diameter and CO2 reactivity during prolonged hyperventilation in the rabbit.
    Muizelaar JP; van der Poel HG; Li ZC; Kontos HA; Levasseur JE
    J Neurosurg; 1988 Dec; 69(6):923-7. PubMed ID: 3142972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate-induced disruption of the blood-brain barrier in rats. Role of nitric oxide.
    Mayhan WG; Didion SP
    Stroke; 1996 May; 27(5):965-9; discussion 970. PubMed ID: 8623120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of lipopolysaccharide on the permeability and reactivity of the cerebral microcirculation: role of inducible nitric oxide synthase.
    Mayhan WG
    Brain Res; 1998 May; 792(2):353-7. PubMed ID: 9593993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium nitroprusside (SNP) hypotension: intracranial pressure (ICP) and hemodynamics in pial arteriole in the rat.
    Lu GP; Kaul DK; Feldman SM; Orkin LR; Baez S
    Microcirc Endothelium Lymphatics; 1990; 6(4-5):315-41. PubMed ID: 2280744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of rat pial arterioles and venules to adenosine and carbon dioxide: with detailed description of the closed cranial window technique in rats.
    Morii S; Ngai AC; Winn HR
    J Cereb Blood Flow Metab; 1986 Feb; 6(1):34-41. PubMed ID: 3080442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Cerebrovascular and Intracranial Pressure Reactivity Assessment of Impaired Cerebrovascular Autoregulation in Intracranial Hypertension.
    Bragin DE; Statom G; Nemoto EM
    Acta Neurochir Suppl; 2016; 122():255-60. PubMed ID: 27165917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.