These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7847139)

  • 21. Mannitol causes compensatory cerebral vasoconstriction and vasodilation in response to blood viscosity changes.
    Muizelaar JP; Wei EP; Kontos HA; Becker DP
    J Neurosurg; 1983 Nov; 59(5):822-8. PubMed ID: 6413661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The differences of the cerebral and spinal vessels in sensitivity to PaCO2 and vasoconstrictors].
    Iida H; Watanabe Y; Ishiyama T; Iida M; Dohi S
    Masui; 1997 Jan; 46(1):2-9. PubMed ID: 9028078
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage.
    Sun BL; Zheng CB; Yang MF; Yuan H; Zhang SM; Wang LX
    Cell Mol Neurobiol; 2009 Mar; 29(2):235-41. PubMed ID: 18821009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of nitric oxide, adenosine, N-methyl-D-aspartate receptors, and neuronal activation in hypoxia-induced pial arteriolar dilation in rats.
    Pelligrino DA; Wang Q; Koenig HM; Albrecht RF
    Brain Res; 1995 Dec; 704(1):61-70. PubMed ID: 8750962
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo rat closed spinal window for spinal microcirculation: observation of pial vessels, leukocyte adhesion, and red blood cell velocity.
    Ishikawa M; Sekizuka E; Sato S; Yamaguchi N; Shimizu K; Kobayashi K; Bertalanffy H; Kawase T
    Neurosurgery; 1999 Jan; 44(1):156-61; discussion 161-2. PubMed ID: 9894976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of platelet-activating factor on cerebral microcirculation in rats: part 2. Local application.
    Uhl E; Pickelmann S; Röhrich F; Baethmann A; Schürer L
    Stroke; 1999 Apr; 30(4):880-6. PubMed ID: 10187895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disruption of the blood-brain barrier in cerebrum and brain stem during acute hypertension.
    Mayhan WG; Faraci FM; Heistad DD
    Am J Physiol; 1986 Dec; 251(6 Pt 2):H1171-5. PubMed ID: 3098113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced myogenic activation in skeletal muscle arterioles from spontaneously hypertensive rats.
    Falcone JC; Granger HJ; Meininger GA
    Am J Physiol; 1993 Dec; 265(6 Pt 2):H1847-55. PubMed ID: 8285222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Persistent effects after trigeminal nerve proprioceptive stimulation by mandibular extension on rat blood pressure, heart rate and pial microcirculation.
    Lapi D; Colantuoni A; Del Seppia C; Ghione S; Tonlorenzi D; Brunelli M; Scuri R
    Arch Ital Biol; 2013 Mar; 151(1):11-23. PubMed ID: 23807620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increased venous pressure causes myogenic constriction of cerebral arterioles during local hyperoxia.
    Wei EP; Kontos HA
    Circ Res; 1984 Aug; 55(2):249-52. PubMed ID: 6744533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A chronic model to simultaneously measure intracranial pressure, cerebral blood flow, and study the pial microvasculature.
    Jallo J; Saetzler R; Mishke C; Young WF; Vasthare U; Tuma RF
    J Neurosci Methods; 1997 Aug; 75(2):155-60. PubMed ID: 9288647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sanguinate's effect on pial arterioles in healthy rats and cerebral oxygen tension after controlled cortical impact.
    Mullah SH; Abutarboush R; Moon-Massat PF; Saha BK; Haque A; Walker PB; Auker CR; Arnaud FG; McCarron RM; Scultetus AH
    Microvasc Res; 2016 Sep; 107():83-90. PubMed ID: 27287870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of protection of the blood-brain barrier during acute hypertension in chronically hypertensive rats.
    Mayhan WG; Faraci FM; Heistad DD
    Hypertension; 1987 Jun; 9(6 Pt 2):III101-5. PubMed ID: 3596775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol.
    Lapi D; Marchiafava PL; Colantuoni A
    J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of intravenous prostaglandin E1 on pial vessel diameters and intracranial pressure in rabbits.
    Miyabe M; Fukuda T; Saito S; Tajima K; Toyooka H
    Acta Anaesthesiol Scand; 2001 Nov; 45(10):1271-5. PubMed ID: 11736681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy.
    Seylaz J; Charbonné R; Nanri K; Von Euw D; Borredon J; Kacem K; Méric P; Pinard E
    J Cereb Blood Flow Metab; 1999 Aug; 19(8):863-70. PubMed ID: 10458593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of myogenic enhancement by norepinephrine.
    Liu J; Hill MA; Meininger GA
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H440-6. PubMed ID: 7511346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Response of intra-acinar pulmonary microvessels to hypoxia, hypercapnic acidosis, and isocapnic acidosis.
    Yamaguchi K; Suzuki K; Naoki K; Nishio K; Sato N; Takeshita K; Kudo H; Aoki T; Suzuki Y; Miyata A; Tsumura H
    Circ Res; 1998 Apr; 82(6):722-8. PubMed ID: 9546381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arteriolar constriction and local renin-angiotensin system in rat microcirculation.
    Vicaut E; Hou X
    Hypertension; 1993 Apr; 21(4):491-7. PubMed ID: 8384604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The direct effects of propofol on pial microvessels in rabbits.
    Shibuya K; Ishiyama T; Ichikawa M; Sato H; Okuyama K; Sessler DI; Matsukawa T
    J Neurosurg Anesthesiol; 2009 Jan; 21(1):40-6. PubMed ID: 19098622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.